COMPLETE SEQUENCES OF POLYNOMIAL VALUES

By R. L. Graham

Introduction. Let $f(x)$ be a polynomial with real coefficients. In 1947, R. Sprague [7] established the result that if $f(x)=x^{n}, n$ an arbitrary positive integer, then every sufficiently large integer can be expressed in the form

$$
\begin{equation*}
\sum_{k=1}^{\infty} \epsilon_{k} f(k) \tag{1}
\end{equation*}
$$

where ϵ_{k} is 0 or 1 and all but a finite number of the ϵ_{k} are 0 . More recently K. F. Roth and G. Szekeres [5] have shown (using ingenious analytic techniques) that if $f(x)$ is assumed to map integers into integers, then the following conditions are necessary and sufficient in order for every sufficiently large integer to be written as (1):
(a) $f(x)$ has a positive leading coefficient.
(b) For any prime p there exists an integer m such that p does not divide $f(m)$.

It is the object of this paper to determine, in an elementary manner, all polynomials $f(x)$ with real coefficients for which every sufficiently large integer can be expressed as (1) (cf. Theorem 4).

Preliminary results. Let $S=\left(s_{1}, s_{2}, \cdots\right)$ be a sequence of real numbers.
Definition 1. $P(S)$ is defined to be the set of all sums of the form $\sum_{k=1}^{\infty} \epsilon_{k} s_{k}$ where ϵ_{k} is 0 or 1 and all but a finite number of ϵ_{k} are 0 .

Definition 2. S is said to be complete if all sufficiently large integers belong to $P(S)$.

Definition 3. S is said to be nearly complete if for all integers $k, P(S)$ contains k consecutive positive integers.

Definition 4. S is said to be a Σ-sequence if there exist integers k and h such that

$$
s_{h+m}<k+\sum_{n=0}^{m-1} s_{h+n}, \quad m=0,1,2, \cdots
$$

(where a sum of the form $\sum_{n=a}^{b}$ is 0 for $b<a$).
The following lemma is one of the main tools used in this paper:
Lemma 1. Let $S=\left(s_{1}, s_{2}, \cdots\right)$ be a Σ-sequence and let $T=\left(t_{1}, t_{2}, \cdots\right)$ be nearly complete. Then the sequence $U=\left(s_{1}, t_{1}, s_{2}, t_{2}, \cdots\right)$ is complete.

Received February 11, 1963.

