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1. Let P() be a non-constant polynomial in (1 ,’, n) and let u(x) be a
weak solution (i.e., a solution in the sense of distributions) of

(1) P(iD.)u(x) 0 for x,Rn,
where x (xl, x.), D (O/OXl, /Oxn), and R" is the real n-dimen-
sional Euclidean space. We denote by L the set of all measurable functions
v(x) in R satisfying: fR. Iv(x)] dx < . We also write a distribution w as

w(x) and denote by (w(x), q(x)) the application of w to a test function .
THEOnEM 1. I] U L and u satisfies (1), then u(x) 0 almost everywhere.

Prool. Considering u as a tempered distribution (see [6]), its Fourier trans-
form satisfies

P()fi() 0.

(For functions, () f e’ q(x)dx.) Hence the support of is contained in the
manifold N(P) {; R and P() 0}. The distribution coincide with
the distribution defined by the classical Fourier transform, say u, of u. Hence
the support of the distribution defined by u is also contained in N(P). Since
u L, Yu 0 almost everywhere. Hence u 0 ulmos everywhere.

2. We are interested in the following problem" Given P(), determine the
largest po such that whenever u(x) satisfies (1) and u L for some 2 _< p _< po
(or 2 <_ p <_ po), u(x) --0 almost everywhere.

It then follows tha if u(x) 0(]xl -), as Ixl-- , for some m > n/po then
u(x) 0 almost everywhere.
The case of elliptic P is of particular interest since we then obtain n extension

of the classical Liouville theorem. It may be recalled that if P() 0 for all
real 0 (P is not necessarily elliptic) then the only tempered distributions which
re solutions of (1) are polynomials and, therefore, in this case po . We
shall now consider a class of elliptic operators P for which N(P) consists of
hyperspheres.

THEORElVI 2. Let P() Q(II), Q being a polynomial. I] u is a solution o]
(1) and u L ]or some 2 <_ p <_ 2n/(n 1), then u(x) O. There exist nonzero
solutions o] (1) which belong to L ]or any p > 2n/(n 1).
Theorem 2 is related o Theorem 4 in [2] and can be proved using the results
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