ENTIRE SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

By Avner Friedman

1. Let $P(\xi)$ be a non-constant polynomial in $\xi=\left(\xi_{1}, \cdots, \xi_{n}\right)$ and let $u(x)$ be a weak solution (i.e., a solution in the sense of distributions) of

$$
\begin{equation*}
P\left(i D_{x}\right) u(x)=0 \text { for } x \varepsilon R^{n} \tag{1}
\end{equation*}
$$

where $x=\left(x_{1}, \cdots, x_{n}\right), D_{x}=\left(\partial / \partial x_{1}, \cdots, \partial / \partial x_{n}\right)$, and R^{n} is the real n-dimensional Euclidean space. We denote by L^{p} the set of all measurable functions $v(x)$ in R^{n} satisfying: $\int_{R^{n}}|v(x)|^{p} d x<\infty$. We also write a distribution w as $w(x)$ and denote by $(w(x), \varphi(x))$ the application of w to a test function φ.

Theorem 1. If $u \in L^{2}$ and u satisfies (1), then $u(x)=0$ almost everywhere.
Proof. Considering u as a tempered distribution (see [6]), its Fourier transform \tilde{u} satisfies

$$
P(\xi) \tilde{u}(\xi)=0 .
$$

(For functions, $\tilde{\varphi}(\xi)=\int e^{i x \cdot \xi} \varphi(x) d x$.) Hence the support of \tilde{u} is contained in the manifold $N(P)=\left\{\xi ; \xi \varepsilon R^{n}\right.$ and $\left.P(\xi)=0\right\}$. The distribution \tilde{u} coincide with the distribution defined by the classical Fourier transform, say $\mathfrak{F} u$, of u. Hence the support of the distribution defined by $\mathfrak{F} u$ is also contained in $N(P)$. Since $\mathfrak{F} u \varepsilon L^{2}, \mathfrak{F} u=0$ almost everywhere. Hence $u=0$ almost everywhere.
2. We are interested in the following problem: Given $P(\xi)$, determine the largest p_{0} such that whenever $u(x)$ satisfies (1) and $u \varepsilon L^{p}$ for some $2 \leq p \leq p_{0}$ (or $2 \leq p \leq p_{0}$), $u(x)=0$ almost everywhere.

It then follows that if $u(x)=O\left(|x|^{-m}\right)$, as $|x| \rightarrow \infty$, for some $m>n / p_{0}$ then $u(x)=0$ almost everywhere.

The case of elliptic P is of particular interest since we then obtain an extension of the classical Liouville theorem. It may be recalled that if $P(\xi) \neq 0$ for all real $\xi \neq 0$ (P is not necessarily elliptic) then the only tempered distributions which are solutions of (1) are polynomials and, therefore, in this case $p_{0}=\infty$. We shall now consider a class of elliptic operators P for which $N(P)$ consists of hyperspheres.

Theorem 2. Let $P(\xi)=Q\left(|\xi|^{2}\right), Q$ being a polynomial. If u is a solution of (1) and $u \varepsilon L^{p}$ for some $2 \leq p \leq 2 n /(n-1)$, then $u(x) \equiv 0$. There exist nonzero solutions of (1) which belong to L^{p} for any $p>2 n /(n-1)$.

Theorem 2 is related to Theorem 4 in [2] and can be proved using the results

[^0]
[^0]: Received January 11, 1963. This work is partially supported by the Alfred P. Sloan Foundation, and by the National Science Foundation Grant G14876.

