ENTIRE SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

By Avner Friedman

1. Let $P(\xi)$ be a non-constant polynomial in $\xi = (\xi_1, \dots, \xi_n)$ and let u(x) be a weak solution (i.e., a solution in the sense of distributions) of

(1)
$$P(iD_x)u(x) = 0 \quad \text{for} \quad x \in \mathbb{R}^n,$$

where $x = (x_1, \dots, x_n)$, $D_x = (\partial/\partial x_1, \dots, \partial/\partial x_n)$, and \mathbb{R}^n is the real *n*-dimensional Euclidean space. We denote by L^p the set of all measurable functions v(x) in \mathbb{R}^n satisfying: $\int_{\mathbb{R}^n} |v(x)|^p dx < \infty$. We also write a distribution w as w(x) and denote by $(w(x), \varphi(x))$ the application of w to a test function φ .

THEOREM 1. If $u \in L^2$ and u satisfies (1), then u(x) = 0 almost everywhere.

Proof. Considering u as a tempered distribution (see [6]), its Fourier transform \tilde{u} satisfies

$$P(\xi)\tilde{u}(\xi) = 0.$$

(For functions, $\tilde{\varphi}(\xi) = \int e^{ix\cdot\xi} \varphi(x)dx$.) Hence the support of \tilde{u} is contained in the manifold $N(P) = \{\xi; \xi \in \mathbb{R}^n \text{ and } P(\xi) = 0\}$. The distribution \tilde{u} coincide with the distribution defined by the classical Fourier transform, say $\mathfrak{F}u$, of u. Hence the support of the distribution defined by $\mathfrak{F}u$ is also contained in N(P). Since $\mathfrak{F}u \in L^2$, $\mathfrak{F}u = 0$ almost everywhere. Hence u = 0 almost everywhere.

2. We are interested in the following problem: Given $P(\xi)$, determine the largest p_0 such that whenever u(x) satisfies (1) and $u \in L^p$ for some $2 \leq p \leq p_0$ (or $2 \leq p \leq p_0$), u(x) = 0 almost everywhere.

It then follows that if $u(x) = O(|x|^{-m})$, as $|x| \to \infty$, for some $m > n/p_0$ then u(x) = 0 almost everywhere.

The case of elliptic P is of particular interest since we then obtain an extension of the classical Liouville theorem. It may be recalled that if $P(\xi) \neq 0$ for all real $\xi \neq 0$ (P is not necessarily elliptic) then the only tempered distributions which are solutions of (1) are polynomials and, therefore, in this case $p_0 = \infty$. We shall now consider a class of elliptic operators P for which N(P) consists of hyperspheres.

THEOREM 2. Let $P(\xi) = Q(|\xi|^2)$, Q being a polynomial. If u is a solution of (1) and $u \in L^p$ for some $2 \le p \le 2n/(n-1)$, then $u(x) \equiv 0$. There exist nonzero solutions of (1) which belong to L^p for any p > 2n/(n-1).

Theorem 2 is related to Theorem 4 in [2] and can be proved using the results

Received January 11, 1963. This work is partially supported by the Alfred P. Sloan Foundation, and by the National Science Foundation Grant G14876.