CYCLICLY RELATED DIFFERENTIAL EQUATIONS

By W. E. Baxter and E. J. Pellicciaro

1. Introduction. It was shown [1] that the system of differential equations

$$
y_{i}^{\prime}=\sum_{k=1}^{n} A_{k} y_{i+m+h k}, \quad\left\{\begin{array}{l}
i=1, \cdots, n ; \quad y_{i+n} \equiv y_{j} \\
A_{k} \quad \text { integrable on }[a, b]
\end{array}\right.
$$

where h and m are integers, first investigated by W. M. Whyburn [3], could be equivalently replaced by the matrix differential equation

$$
\begin{equation*}
Y^{\prime}=A Y, \quad A \text { a circulant } \tag{1}
\end{equation*}
$$

and solved explicitly.
This paper shows that the fundamental matrix Y of (1) such that $Y(a)=I$, the identity matrix, is a circulant, implying that one column determines the matrix. Also considered is the matrix differential equation

$$
\begin{equation*}
Y^{\prime}=A E Y \tag{2}
\end{equation*}
$$

where A is a circulant and the $n \times n$ matrix $E=\left(e_{i j}\right)$ is defined by

$$
e_{i i}= \begin{cases}1 & \text { if } i+j=n, 2 n \tag{3}\\ 0 & \text { elsewhere }\end{cases}
$$

and a fundamental matrix exhibited. The paper in turn considers the interrelation between (1) and (2) as well as the matrix equation $Y^{\prime}=(A+B E) Y$, where A and B are circulants.
2. Circulants and anticirculants. Let σ denote the algebra of real valued functions which are continuous on $[a, b]$ and let a_{1}, \cdots, a_{n} belong to σ with the agreement that $a_{n}=a_{0}$. (This is a restriction for simplicity. Extensions of the theorems to more general functions will be apparent.)

Definition. An $n \times n$ matrix $A=\left(a_{i i}\right)$ is called i) a circulant [2] with elements a_{1}, \cdots, a_{n} (or simply a circulant) if, and only if, $a_{i j}=a_{i-i+1 \bmod n}$, ii) an anticirculant with elements a_{1}, \cdots, a_{n} (or simply an anticirculant) if, and only if, $a_{i j}=a_{i+i-1 \bmod n}$.

The following theorems are easily proven.
Theorem 1. a) A is a circulant [2] with elements a_{1}, \cdots, a_{n} if, and only if, $A=\sum_{k} a_{k} F^{k-1}$, where $F=\left(f_{i i}\right)$ is the matrix defined by

Received January 17, 1963. Contributions by Pellicciaro supported in part by the University of Delaware Research Foundation, Inc.

