ON THE CONGRUENCE $a x^{3}+b y^{3}+c z^{3}+d x y z \equiv n(\bmod p)$

By L. J. Mordell
Let p be a prime and let $f(x, y, z)$ be an irreducible cubic polynomial with integer coefficients which is neither a function of only two independent variables nor homogeneous in linear functions of x, y, z. Then there is the Conjecture.

The number N of solutions of the congruence

$$
\begin{equation*}
f(x, y, z) \equiv 0 \quad(\bmod p) \tag{1}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
N=p^{2}+O(p) \tag{2}
\end{equation*}
$$

where the implied constant is an absolute one.
I have proved this in the special cases

$$
\begin{equation*}
z^{2} \equiv f(x, y) \tag{3}
\end{equation*}
$$

when [1], [2] [3]

$$
\begin{aligned}
& f(x, y) \equiv a x^{3}+b x^{2} y+c x y^{2}+d y^{3}+k \\
& f(x, y) \equiv a x^{3}+b x^{2} y+c x y^{2}+d y^{3}+l x+m y \\
& f(x, y) \equiv a x^{3}+b y^{3}+c x y+d .
\end{aligned}
$$

Surprisingly enough, in the last case, there is a simple closed expression for N. The general case (3) still awaits solution.

The case

$$
a x^{3}+b y^{3}+c z^{3} \equiv n, \quad a b c n \not \equiv 0
$$

has been known for a long time. I now prove that the congruence

$$
\begin{equation*}
a x^{3}+b y^{3}+c z^{3}+d x y z \equiv n, \quad a b c d \not \equiv 0 \tag{4}
\end{equation*}
$$

has $N=p^{2}+O(p)$ solutions if $n \neq 0$, and $N=p^{2}+O\left(p^{\frac{3}{2}}\right)$ solutions if $n \equiv 0$.
Suppose first that $n \equiv 0$. Clearly $N=p^{2}+O\left(p^{\frac{3}{2}}\right)$ since the number of solutions of $a X^{3}+b Y^{3}+c+d X Y \equiv 0$ is $p+O\left(p^{3}\right)$. Suppose hereafter that $n \not \equiv 0$. The result (2) is trivially true when $p \equiv 2(\bmod 3)$. For if $z \equiv 0$, (4) has $O(p)$ solutions. When $z \not \equiv 0$, we put $x=X z, y=Y z$, and then

$$
z^{3}\left(a X^{3}+b Y^{3}+c+d X Y\right) \equiv n
$$

These are $O(p)$ values of X, Y for which the coefficient of z^{3} is $\equiv 0$. Excluding these, each of the p^{2} values of X, Y gives a unique value for z.

Received October 1, 1962. This research was supported by the Air Force Office of Scientific Research.

