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I. Introduction. Let / denote the linear space of all functions (x) in
L(- , ) which vanish for negative values of their argument. We say that
a subspace L of/ is le]t translation invariant if [(x) e L implies that the pro-
jection of [(x r) onto/ belongs to L for all positive r. A subspace/ of/
is called right translation invariant if the right translate (x r) of every ele-
ment (x) / belongs to/ for all positive r. The orthogonal complement with
respect to/ of a left translation invariant space is right translation invariant,
and conversely.
Now take L to be any closed left translation invariant subspace of and

let T L -- L be the one-sided shift operator defined by

(Tl)(x) =[(x 1) if x >_0

0 otherwise.

A description of the non-zero elements of r(T), the spectrum of T, in terms of
an analytic function characterizing L was given in an earlier paper [5], but the
problem of deciding when (T) contains the origin was left unsolved. Our
aim here is to settle this question and, in addition, to find a bound for lIT-111
when the origin lies outside of (T). The estimate obtained for lIT-111 has
some applications in communication theory which we plan to explore in a forth-
coming paper.

II. Spectral analysis. Let H denote the space of functions h(s) which are the
Fourier transforms of functions in/, i. e.

f_ e’(x) dx h()F()

The space H is characterized by the one-sided

Px-WTHO. Every ]unction h in H can be extended as a regular
analytic unction into the upper hal-plane in such a way that

A- it)h*(s A- it) ds <_ constant

or all positive values o t. Conversely, the restriction to the real axis o] any such
]unction belongs to H [7].
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