REARRANGEMENTS OF SQUARE MATRICES WITH NON-NEGATIVE ELEMENTS

By Binyamin Schwarz

Introduction. In their book on inequalities, Hardy, Littlewood and Pólya define rearrangements of an ordered set (a) of n numbers a_{1}, \cdots, a_{n} in the following way [5, Chapter X]: Let $\varphi(j), j=1, \cdots, n$ be a permutation function, i.e., a function which takes each of the values $1, \cdots, n$ just once when j varies through the same aggregate of values. If

$$
a_{\varphi(i)}=a_{i}^{\prime}, \quad j=1, \cdots, n,
$$

then the set $\left(a^{\prime}\right)=\left(a_{1}^{\prime}, \cdots, a_{n}^{\prime}\right)$ is called a rearrangement of the given set $(a)=$ $\left(a_{1}, \cdots, a_{n}\right)$. We may look upon (a) and (a^{\prime}) as vectors; two vectors are mutual rearrangements if they have the same unordered set of components. Here we use the term "rearrangement of a square matrix of order n " in the same sense, i.e. with regard to the unordered set of its n^{2} elements. Given a set σ of n^{2} numbers we obtain a set \mathfrak{M} of $\left(n^{2}\right)$! square matrices of order n and if the given numbers are pairwise different then the matrices M of \mathfrak{M} will also be pairwise different. \mathfrak{M} is thus the set of all rearrangements of any of its matrices.

Some rearrangements of a given matrix $M=\left(m_{i j}\right), i, j=1, \cdots, n$, are often considered: the transpose $M^{T}=\left(m_{i j}^{T}\right), m_{i j}^{T}=m_{i i}$ and all the permutations of $M . M^{\prime}=\left(m_{i i}^{\prime}\right)$ is a permutation of M if $m_{i j}^{\prime}=m_{\varphi(i) \varphi(i)}$ where $\varphi(i), i=$ $1, \cdots, n$, is a permutation function. A permutation is therefore a rearrangement of the rows combined with the same rearrangement of the columns [4;50]. We call these two kinds of rearrangements and their combinations trivial rearrangements and we say that M_{1} and M_{2} are essentially different if M_{2} is a rearrangement of M_{1} but not a trivial one. If the n^{2} numbers of σ are pairwise different, then \mathfrak{M} splits into (n^{2})!/2n! subsets \mathfrak{M}_{i}; each \mathfrak{M}_{i} contains $2(n!)$ mutual trivial rearrangements and two matrices belonging to different subsets are essentially different.

Throughout this paper we assume that the n^{2} elements of σ are real and non-negative. In $\S 1$ we consider for any given \mathfrak{M} the extrema of $\left\|M^{2}\right\|, M \varepsilon \mathfrak{M}$. Here $\left\|M^{2}\right\|=\sum k_{i j}$ where $M^{2}=K=\left(k_{i j}\right)$ (and $m_{i j} \geq 0$ implies $k_{i j} \geq 0$). This norm of the square is invariant under trivial rearrangements while $\|M\|$ and any other Hölder norm $\|M\|_{\nu}$ [7] of M itself is invariant under all rearrangements and hence constant for the whole set \mathfrak{M}. If M_{1} and M_{2} are essentially different, then, in general, $\left\|M_{1}^{2}\right\| \neq\left\|M_{2}^{2}\right\|$. But to find the extrema of $\left\|M^{2}\right\|$, $M \varepsilon \mathfrak{M}$, we do not have to compute this norm of the square for all essentially different matrices of \mathfrak{M}. Indeed, denoting by \mathfrak{A}^{+}the subset of \mathfrak{M} on which $\left\|M^{2}\right\|$ is maximal and by \mathfrak{C}^{+}the subset of all matrices of \mathfrak{M} for which the

[^0]
[^0]: Received November 5, 1962. Sponsored by the Mathematics Research Center, U. S. Army, Madison, Wisconsin, under Contract No. DA-11-022-ORD-2059.

