ALGEBRAS OF BOUNDED FUNCTIONS IN L_n

Bv S. CATER

Let (X, m) be a measure space as defined by Halmos in [4; 73], and let p be a positive number. We define $L_p(X, m)$ to be the class of all measurable real valued functions f on X for which $\int |f|^p dm < \infty$, two functions in $L_p(X, m)$ being identified if they are equal almost everywhere. Then $L_p(X, m)$ is a real topological vector space under the usual operations of addition and scalar multiplication of functions where a neighborhood system of the zero function θ is given by sets of the form $\{f \in L_p(X, m): \int |f|^p < \epsilon\}$ for all $\epsilon > 0$. Indeed $L_2(X, m)$ is a real Hilbert space with the inner product $(f, g) = \int fg$. More generally $L_p(X, m)$ is a real Banach space with norm $|| f || = (f | f |^p)^{1/p}$ if $p \ge 1$, but $L_p(X, m)$ might not be normed if $0 \lt p \lt 1$ (i.e., there might not exist a norm on the vector space $L_p(X, m)$ which induces the same topology on $L_p(X, m)$; see [2]).

The product of two bounded functions in $L_p(X, m)$ must be in $L_p(X, m)$. By an algebra of bounded functions in $L_p(X, m)$ we mean a collection of bounded functions in $L_p(X, m)$ closed under products and linear combinations. In the present paper we produce several density theorems concerning algebras of bounded functions in $L_p(X, m)$. Such density theorems are not new; in [3] Farrell showed that if X is locally compact, if m is a σ -finite Baire measure, if the algebra "separates" open sets in a certain sense and contains a function which is positive almost everywhere, then the algebra is dense in L_p . Theorem 3 in the present paper generalizes the work of Farrell.

The proof of the following Theorem is fairly routine if (X, m) is a finite or σ -finite measure space; however, this result is valid for an arbitrary measure space and any restrictions on (X, m) are immaterial. (Note that a sequence of measurable functions $\{f_n\}$ is said to "converge in measure" to a measurable function f on a set E if $\lim_{n} mE[|f - f_n| \geq \epsilon] = 0$ for every $\epsilon > 0$; see [6; 223].)

THEOREM 1. Let M be an algebra of bounded functions in $L_p(X, m)$ where (X, m) is a measure space, and let f be a function in $L_p(X, m)$. Then the following are equivalent.

- (1) There is a sequence of functions $\{f_n\}$ in M such that $\lim_{n} \int_{\mathcal{X}} |f f_n|^p = 0$.
- (2) For each measurable set E with $m(E) < \infty$, there is a sequence of functions ${f_n}$ in M for which $\lim_{n} \int_E |f - f_n|^p = 0$.
- (3) For each measurable set E for which $m(E) < \infty$, there is a sequence of functions $\{f_n\}$ in M converging in measure to f on E.

(4) There is a sequence of functions $\{f_n\}$ in M converging in measure to f on X. In particular if f is a bounded function in $L_p(X, m)$ then these properties are equivalent to each of the following.