THE LEBESGUE DECOMPOSITION

By R. B. Darst

Our purpose is to present a Lebesgue decomposition theorem extending both C. E. Rickart's theorem: [2], and the theorem of [1]. This consists in establishing the theorem of [1] in a setting where the monotone norm condition of [1, Definition 2.3] is replaced by a form of C. E. Rickart's s-bounded condition [2, Lemma 2.2].

Suppose G is a generalized complete normed abelian group and T is a Boolean algebra of projection operators on G. (Throughout this paper we assume familiarity with [2] and [1].) Moreover, if each of a and b is an element of T, $a \leq b$, and $g \varepsilon G$, then we suppose $\|a(g)\| \leq\|b(g)\|$.

An element f of G is said to be s-bounded if for every sequence $\left\{t_{i}\right\}$ of pairwise disjoint elements of $T, t_{i}(f) \rightarrow 0$.

If a bounded element f of G has the property of Definition 2.3 of [1] with respect to T, then f is s-bounded. Moreover, the subspace of $l_{\infty}(I)$, where I denotes the set of positive integers, consisting of the sequences converging to zero, together with the projections on finite subsets of I and their complements (see Example 2.1 of [1]), comprise an example to illustrate that s-boundedness is, in fact, a weaker condition on bounded elements than we used in [1].
C. E. Rickart's theorem fits into our setting as follows: The elements g of G are vector-valued functions defined on a "nice system" S of sets. The elements t of T are projections induced by the elements E of S (i.e., if t corresponds to E, then for every $F \varepsilon S,(\operatorname{tg})(F)=g(E \cap F))$. The norm ||| $g\|\|$ of the elements g of G is $\sup \{\|g(E)\| ; E \varepsilon S\}$. Finally,

$$
\left\|\left\|t^{\prime}(g)\right\|\right\|=\sup \{\|g(F-E)\| ; F \varepsilon S\}
$$

where t corresponds to E and t^{\prime} denotes the complement of t.
Henceforth f shall denote a bounded and s-bounded element of G.
Lemma 1. If $\left\{t_{i}\right\}$ is a monotone sequence of elements of T, then $\lim _{i} t_{i}(f)$ exists.
Proof. Suppose, for instance, $\left\{t_{i}\right\} \uparrow$ in T. Moreover, suppose $\lim _{i} t_{i}(f)$ does not exist. Then there exists $\epsilon>0$ and an increasing sequence $\left\{n_{k}\right\}$ of positive integers such that $\left\|\left(t_{n_{k+1}}-t_{n_{k}}\right)(f)\right\|>\epsilon$. But this contradicts our basic supposition that f be s-bounded.

Lemma 2. If $\left\{t_{k}\right\}$ is a sequence of elements of T and $\epsilon>0$, then there exists a positive integer n such that if $j \geq i>n$, then

$$
\left\|\left(\bigvee_{i \leq k \leq i} t_{k}-\underset{k \leq n}{V} t_{k}\right)(f)\right\|<\epsilon
$$

Received October 8, 1962.

