A THEOREM OF BREWER ON CHARACTER SUMS

Dedicated to Professor H. S. Vandiver on his eightieth birthday.

By Albert Leon Whiteman

1. Introduction. It is well known that an odd prime p can be represented uniquely in the form $c^{2}+2 d^{2}$ if and only if $p=8 k+1$ or $p=8 k+3$. In a recent paper Brewer [1] has expressed c in terms of the sum

$$
\begin{equation*}
B=\sum_{u=0}^{p-1} \chi\left((u+2)\left(u^{2}-2\right)\right), \tag{1.1}
\end{equation*}
$$

where $\chi(n)$ is the quadratic character of n modulo p. His precise result may be stated as follows.

Theorem. The sum B satisfies

$$
B= \begin{cases}0 & \left(p \neq c^{2}+2 d^{2}\right) \\ 2 c & \left(p=c^{2}+2 d^{2}\right)\end{cases}
$$

the sign of c being determined by the condition $c \equiv(-1)^{k+1}(\bmod 4)$.
Brewer's method of proof makes essential use of the following congruences. If $p=c^{2}+2 d^{2}\left(c \equiv(-1)^{k+1}(\bmod 4)\right)$, then

$$
2 c \equiv\left\{\begin{array}{lll}
-\binom{4 k}{k}(\bmod p) & (p=8 k+1) \tag{1.2}\\
\binom{4 k+1}{k}(\bmod p) & (p=8 k+3)
\end{array}\right.
$$

The first congruence in (1.2) is due to Stern [4]; the second is due to Eisenstein [2]. Brewer remarks that it would be of interest to prove his theorem without employing these congruences.

The purpose of this paper is to give a straightforward proof of the theorem from which (1.2) follows easily as a corollary.
2. A preliminary lemma. Let p be an odd prime and let γ denote a generator of the multiplicative group of the finite field $G F\left(p^{2}\right)$. For $\xi \in G F\left(p^{2}\right)$ put

$$
\begin{equation*}
\operatorname{tr}(\xi)=\xi+\xi^{p}, \tag{2.1}
\end{equation*}
$$

so that $\operatorname{tr}(\xi) \varepsilon G F(p)$. If $\xi \neq 0$ let $\bar{\xi}$ be the unique solution of the equation
Received October 5, 1962. This research was partially supported by National Science Foundation grant G 9668. Presented to the Society, November 17, 1962.

