LAGUERRE TRANSFORMS

By I. I. Hirschman, Jr.

1. Introduction. If $L_{n}(x)$ is the Laguerre polynomial of degree n,
(1)

$$
L_{n}(x)=\frac{1}{n!} e^{x}\left(\frac{d}{d x}\right)^{n}\left[e^{-x} x^{n}\right] \quad n=0,1, \cdots
$$

then

$$
\begin{equation*}
\int_{0}^{\infty} L_{n}(x) L_{m}(x) e^{-x} d x=\delta(n, m) \tag{2}
\end{equation*}
$$

where $\delta(n, m)$ is 0 or 1 as $n \neq m$ or $n=m$. We have the recursion formula

$$
\begin{equation*}
-(n+1) L_{n+1}(x)+(2 n+1) L_{n}(x)-n L_{n-1}(x)=x L_{n}(x) \tag{3}
\end{equation*}
$$

which is valid for $n=0,1, \cdots . \quad\left(L_{-1}(x)\right.$ is to be interpreted as 0 .)
It was shown in [2] that if

$$
\begin{equation*}
E(x)=e^{c x} \prod_{k}\left(1+\frac{x}{a_{k}}\right) \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
0 \leq c, \quad 0<a_{k}, \quad \sum_{k} a_{k}^{-1}<\infty \tag{5}
\end{equation*}
$$

and if

$$
\begin{equation*}
G(n, m)=\int_{0}^{\infty}[E(x)]^{-1} L_{n}(x) L_{m}(x) e^{-x} d x \tag{6}
\end{equation*}
$$

then the infinite matrix $[G(n, m)] n, m=0,1, \cdots$ is totally non-negative; that is, if $0 \leq m_{1}<m_{2}<\cdots<m_{r}, 0 \leq n_{1}<n_{2}<\cdots<n_{r}$, then

$$
\operatorname{det}\left(\begin{array}{cccc}
G\left(n_{1}, m_{1}\right) & G\left(n_{1}, m_{2}\right) & \cdots & G\left(n_{1}, m_{r}\right) \tag{7}\\
G\left(n_{2}, m_{1}\right) & G\left(n_{2}, m_{2}\right) & \cdots & G\left(n_{2}, m_{r}\right) \\
\vdots & \vdots & & \\
G\left(n_{r}, m_{1}\right) & G\left(n_{r}, m_{2}\right) & \cdots & G\left(n_{r}, m_{r}\right)
\end{array}\right] \geq 0
$$

Received August 6, 1962. This research was supported in part by the United States Air Force through the Air Force Office of Scientific Research and Development Command under Contract No. AF49(638)-846.

