AN INVOLUTION OF THE n-CELL

By Kyung Whan Kwun

1. Introduction. Examples of non-linear involutions of the spheres are abundant. In most cases, the non-linearity of the involution considered is based on the fact that the orbit space is not right. In their recent paper [5], Kwun and Raymond show the existence of a non-linear involution of the n-cell, for each $n \geq 5$, such that the orbit space is an n-cell. However, the fixed point set of their example is not a manifold with boundary. The purpose of this note is to prove

The Main Theorem. There exists an involution T_{n} for each $n \geq 4$ of the n-cell I^{n} such that the orbit space is an n-cell, the fixed point set is an $(n-1)$-cell but T_{n} is not linear.

It is clear that the linearity of T_{n} depends entirely on the linearity of $T_{n} \mid \mathrm{Bd} I^{n}$ if the orbit space and the fixed point set are an n-cell and an $(n-1)$-cell respectively. In fact, our argument of the non-linearity of T_{n} is based on that of $T_{n} \mid \mathrm{Bd} I^{n}$. In the above, the words the "orbit space of T_{n} " are an abbreviation of the orbit space of the group generated by T_{n}.

It should perhaps be stated that by a linear action we really mean an action equivalent to a linear one. More precisely, we say an action T on an n-cell X is linear if there exists a homeomorphism h of the unit ball B of E^{n} onto X and an orthogonal transformation T^{\prime} of E^{n} such that $h^{-1} T h=T^{\prime} \mid B$.

We acknowledge some helpful comments the referee has made on this paper.
2. Description of T_{4}. Consider I^{4} and express Bd I^{4} as the union of a 3 -cell D and a solid horned sphere E (See [1]) along their"boundaries". Let $I_{i}^{4}=h_{i}\left(I^{4}\right)$, $i=1,2$, be homeomorphic copies of I^{4} under some homeomorphisms h_{i}.

Let X be the union of I_{1}^{4} and I_{2}^{4} with the sole identification that $h_{1}(x)=h_{2}(x)$ for each $x \in D$. Define T_{4} as the involution of X that interchanges $h_{1}(x)$ and $h_{2}(x)$ for all $x \in I^{4}$. We shall show in $\S 4$ that X is a 4 -cell with $\operatorname{Bd} X=h_{1}(E) \cup$ $h_{2}(E)$. Then it follows that
(1) T_{4} is an involution of a 4 -cell X,
(2) the orbit space of T_{4} is a 4 -cell,
(3) the fixed point set is a 3 -cell and
(4) the orbit space of $T_{4} \mid \mathrm{Bd} X$ is a solid horned sphere and therefore T_{4} is not linear.
3. Induced pseudo-isotopy. Let X be a compact Hausdorff space and G

Received August 27, 1962.

