AN ERGODIC APPLICATION OF ALMOST CONVERGENT SEQUENCES

By L. Sucheston

1. On the space of bounded real sequences $\{x_n\}$ there exist linear functionals L called *Banach limits*, satisfying the conditions

(1)
$$L(x_n) \ge 0 \text{ if } x_n \ge 0, \quad n = 0, 1, \dots;$$

$$(2) L(x_{n+1}) = L(x_n);$$

(3)
$$\lim \inf x_n \le L(x_n) \le \lim \sup x_n;$$

(see [1; 34]; [8; 73]). If there is a number s with $L(x_n) = s$ for all Banach limits L, the sequence $\{x_n\}$ is called *almost convergent*, and one writes: F-lim $x_n = s$.

It is shown in this note that certain basic ergodic properties: ergodicity and invariance of finite measures, existence of finite invariant equivalent measures, may be simply expressed in terms of almost convergent sequences. A link is thus established with Lorentz's study of almost convergent sequences [16]. We state the main theorem of [16], which will be repeatedly applied in the sequel.

THEOREM 1 (Lorentz). A sequence $\{x_n\}$ is almost convergent with F-limit s if and only if

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=i}^{i+n-1}x_j=s$$

uniformly in i.

Note that certain connections between abstract ergodic theory and Theorem 1 are known; thus Jerison [15; 86] derives Theorem 1 from a Banach space mean ergodic theorem.

2. Let Ω be a non-empty abstract set and let Ω be a σ -field of subsets of Ω . All considered sets will be assumed in Ω . A measurable transformation T is a mapping from Ω into Ω with $T^{-1}\Omega \subset \Omega$; if also T^{-1} is a measurable transformation, T is invertible. In the sequel, a system (Ω, Ω, T) will be assumed given, with T measurable, but not necessarily invertible. A measure $(\alpha$ -measure) p is a countably additive (finitely additive), non-negative set function on Ω with $0 < p(\Omega) < \infty$. (Even when we assume that p is a probability measure, i.e. $p(\Omega) = 1$, all results hold, with obvious modifications, if only $p(\Omega) < \infty$.) A set A is invariant if $A = T^{-1}A$; a measure p is ergodic if p(A) = 0 or $p(\Omega - A) = 0$

Received June 15, 1962. Presented to the American Mathematical Society (Abstracts 584-2, 62T-107).

This work was in part supported by National Science Grant 14446. The author wishes to acknowledge helpful information he obtained from Professor S. Kakutani.