AN ERGODIC APPLICATION OF ALMOST CONVERGENT SEQUENCES

By L. Sucheston

1. On the space of bounded real sequences $\left\{x_{n}\right\}$ there exist linear functionals L called Banach limits, satisfying the conditions

$$
\begin{align*}
L\left(x_{n}\right) & \geq 0 \quad \text { if } \quad x_{n} \geq 0, \quad n=0,1, \cdots ; \tag{1}\\
L\left(x_{n+1}\right) & =L\left(x_{n}\right) \tag{2}\\
\lim \inf x_{n} & \leq L\left(x_{n}\right) \leq \lim \sup x_{n} ; \tag{3}
\end{align*}
$$

(see $[1 ; 34] ;[8 ; 73])$. If there is a number s with $L\left(x_{n}\right)=s$ for all Banach limits L, the sequence $\left\{x_{n}\right\}$ is called almost convergent, and one writes: F - $\lim x_{n}=s$.
It is shown in this note that certain basic ergodic properties: ergodicity and invariance of finite measures, existence of finite invariant equivalent measures, may be simply expressed in terms of almost convergent sequences. A link is thus established with Lorentz's study of almost convergent sequences [16]. We state the main theorem of [16], which will be repeatedly applied in the sequel.

Theorem 1 (Lorentz). A sequence $\left\{x_{n}\right\}$ is almost convergent with F-limit s if and only if

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=i}^{i+n-1} x_{i}=s
$$

uniformly in i.
Note that certain connections between abstract ergodic theory and Theorem 1 are known; thus Jerison [15; 86] derives Theorem 1 from a Banach space mean ergodic theorem.
2. Let Ω be a non-empty abstract set and let \mathbb{Q} be a σ-field of subsets of Ω. All considered sets will be assumed in a. A measurable transformation T is a mapping from Ω into Ω with $T^{-1} \mathbb{Q} \subset Q$; if also T^{-1} is a measurable transformation, T is invertible. In the sequel, a system (Ω, a, T) will be assumed given, with T measurable, but not necessarily invertible. A measure (α-measure) p is a countably additive (finitely additive), non-negative set function on \mathbb{Q} with $0<p(\Omega)<\infty$. (Even when we assume that p is a probability measure, i.e. $p(\Omega)=1$, all results hold, with obvious modifications, if only $p(\Omega)<\infty$.) A set A is invariant if $A=T^{-1} A$; a measure p is $\operatorname{ergodic}$ if $p(A)=0$ or $p(\Omega-A)=0$

Received June 15, 1962. Presented to the American Mathematical Society (Abstracts 584-2, 62T-107).

This work was in part supported by National Science Grant 14446. The author wishes to acknowledge helpful information he obtained from Professor S. Kakutani.

