A CLASS OF PRETZEL KNOTS

By R. H. Crowell and H. F. Trotter

1. Introduction. Let $K \subset S^{3}$ be a tame knot with group $G=\pi_{1}\left(S^{3}-K\right)$ and Alexander polynomial $\Delta(t)$. By a surface spanning K is meant a tame, connected, orientable 2 -manifold with boundary K. The minimum of the genera of all surfaces spanning K is the genus g of K.

Among all possible knot groups those for which the commutator subgroup $[G]$ is finitely generated are of special interest. Suppose S is a surface of minimal genus that spans K. The inclusion $i: S^{3}-S \rightarrow S^{3}-K$ induces a homomorphism of the fundamental groups which maps $\pi_{1}\left(S^{3}-S\right)$ into [G]. Neuwirth has shown [3] that [G] is finitely generated iff $i: \pi_{1}\left(S^{3}-S\right) \rightarrow[G]$ is an isomorphism and both groups are free of rank $2 g$. Hence for $[G]$ to be finitely generated it is obviously necessary that
(i) $\pi_{1}\left(S^{3}-S\right)$ is free of rank $2 g$.

According to Theorem 1 of [4], if [G] is free of rank $2 g$, then
(ii) $|\Delta(0)|=1$ and degree $\Delta(t)=2 g$.
(It is not hard to show that the induced mapping $i: H_{1}\left(S^{3}-S\right) \rightarrow[G] /[[G]]$ is an isomorphism iff (ii) holds.) We conjectured that (i) and (ii) were sufficient for $[G]$ to be free. (Here and elsewhere in this paper a "free" group is assumed to be finitely generated.) Recently Murasugi showed that the conjecture is true for alternating knots. (In this case (i) and (ii) are implied by $|\Delta(0)|=1$.) We show in this paper that the conjecture does not hold in general.

We consider a class of pretzel knots [5; 9] of genus ≤ 1, namely, projections like those in Figure 1 with an odd number of knots having crossings in each braid. Such a knot is specified by a triple of integers ($2 p+1,2 q+1,2 r+1$) whose absolute values are the numbers of crossings in the braids and which are \pm according as the twists are right or left handed. Triples which differ only by a permutation or change of sign throughout obviously specify equivalent knots. We shall see that to within these allowable changes, only $(1,1,1)$ and $(3,-1,3)$ specify the trefoil knot, and only (1, 1, -3) specifies the figure-eight knot.

Every knot K specified by $(2 p+1,2 q+1,2 r+1)$ will be shown to be spanned by a surface S of genus 1 , which satisfies condition (i) unless K is trivial, and which has

$$
V=\left(\begin{array}{cc}
p+q+1 & -q-1 \\
-q & q+r+1
\end{array}\right)
$$

Received May 10, 1962. This research was done while Crowell was at Princeton on a leave of absence (1961-62) from Dartmouth sponsored jointly by a Dartmouth College Faculty Fellowship and the ONR.

