PARTITIONS OF EUCLIDEAN SPACES INTO DENSE, L_n-CONNECTED SETS

BY JACK G. CEDER

In [1; 110] Hocking and Young construct by transfinite induction two disjoint, dense, connected subsets of E^2 (the plane) whose union is E^2 . The construction can be easily modified so as to divide E^2 into α such sets where $\alpha \leq \mathbf{c}$. (By **c** is meant the first ordinal equipotent to E^1 .) A natural question then arises: for what α , can E^2 (or E^n in general) be partitioned into α disjoint, dense sets which are "connected" in some more restrictive sense such as arcwiseconnected or polygonally- connected, etc.? As a partial answer to this, we obtain some results on partitioning $E^k(k > 1)$ and certain of its subsets into disjoint, dense L_n -connected subsets. Our main result is that E^2 can be so partitioned into 2 L_5 -connected sets and that neither the "2" nor the "5" can be improved upon.

A subset C of E^k is L_n -connected if each two distinct points in C can be joined by a polygonal arc, having no more than n segments, lying entirely in C. (Our " L_n -connected" is the same as the " L_n -set" as introduced and defined by Horn and Valentine [2].) In particular, if C(y, z) denotes this polygonal arc joining y and z in C, we have $C(y, z) = \bigcup_{i=1}^m [x^i, x^{i+1}]$ where $y = x^1, z = x^{m+1}, m \leq n$ and $x^i \notin [x^{i-1}, x^{i+1}]$ for all j. (For a, $b \in E^k[a, b] = \{\lambda a + (1 - \lambda)b : 0 \leq \lambda \leq 1\}$.) Moreover, if α is any ordinal $\leq c$, we say $C \subset E^k$ can be partitioned into α dense, L_n -connected sets if there exists a family of α disjoint, dense L_n -connected subsets of C whose union is C.

I. Partitions for E^2 . The possibilities for such partitions of E^2 are established by the following three theorems.

THEOREM 1. E^2 can be partitioned into 2 dense L_5 -connected sets.

Proof. For t a positive real put $T_t = [it, t-it] \cup [t-it, -t-it] \cup [-t-it, it]$ and define $A_1 = \cup \{T_t - \{-it\} : t > 0, t \text{ rational}\}$ and $A_2 = (\cup \{T_t - \{it\} : t > 0, t \text{ irrational}\}) \cup \{0\}$. It is easily checked that A_1 and A_2 give the desired partition.

THEOREM 2. E^2 cannot be partitioned into 2 dense L_n -connected sets for any n < 5.

Proof. Suppose $E^2 = A \cup B$ where A and B are disjoint, dense L_4 -connected sets. First note that for $y, z \in A$ the set $A(y, z) = \bigcup_{i=1}^{n} [x^i, x^{i+1}]$, which we call an *n*-link, will be unique; otherwise we would get a closed curve separating E^2 . Using the connectedness and denseness of both A and B, it follows easily

Received June 14, 1962.