ARCWISE CONNECTED SETS IN THE PLANE

By Mary Ellen Rudin

Our space will be the plane E. Let $M=\left\{\operatorname{Re}^{i \theta} \mid\right.$ either (1) $\theta=0$, or (2) $\theta \neq \pi$ and R is rational $\}$ and let $N=\left\{\mathrm{Re}^{i \theta} \mid\right.$ either (1) $\theta=\pi$ and $R \neq 0$ or (2) $\theta \neq 0$ and R is irrational\}. This example of two disjoint dense arcwise connected sets whose union is E has been given by J. G. Ceder who has also raised the question of the existence of three disjoint dense arcwise connected sets whose union is E.

A subset of E is said to be of category 1 if it is the union of at most countably many nowhere dense sets; a subset of E is of category 2 if it is not of category 1. By the Baire Category Theorem, E is of category 2. Note that the union of countably many sets of category 1 is of category 1 .

Theorem. If there are three disjoint arcwise connected sets each of which is dense in E, then each of the sets is of category 1 .

This theorem clearly answers Mr. Ceder's question in the negative; and, in fact, if for some countable cardinal $\alpha>2$, there are α disjoint arcwise connected dense subsets of E, by this theorem each of the sets is of category 1 and hence their union is of category 1.

For the rest of the paper we will assume that A, B, and C are disjoint arcwise connected dense subsets of E and that A is of category 2. A number of lemmas will be proved in order to reach a contradiction of this assumption.

We will use the letters n and m to stand for positive integers and the letter i to stand for the integers 1 and 2 .

For p and q in A, let $A(p, q)$ be the unique arc from p to q lying in A; also $A(p, p)=\{p\}$. Define $B(p, q)$ and $C(p, q)$ similarly for p and q in B and C, respectively.

For $p \varepsilon A$, let $G_{p}=\{X \mid$ for some $x \varepsilon A-\{p\}, X$ is the set of all points $y \varepsilon A$ so that $p \notin A(x, y)\}$. Note that no two elements of G_{p} have a point in common.

Lemma 1. If $p \varepsilon A$, there is at most one term of G_{p} of category 2 .
Proof of Lemma 1. Suppose that X_{1} and X_{2} are two terms of G_{p} of category 2 and that $x_{i} \varepsilon X_{i}$.

Since B is dense in E, there must be sequences of points of B approaching p from opposite sides of $A\left(x_{1}, x_{2}\right)$. Therefore we can find $\operatorname{arcs} L_{1}, L_{2}, \cdots$ such that $L_{n} \supset L_{n+1}, L_{1} \cap L_{2} \cap \cdots=\{p\}$, the end points of L_{n} belong to $B, L_{n} \cap A\left(x_{1}, x_{2}\right)=\{p\}$, and $A\left(x_{1}, p\right)$ and $A\left(x_{2}, p\right)$ abut on L_{n} from opposite sides.

For each n and i, let $X_{i n}=\left\{x \mid A\left(x, x_{i}\right) \cap L_{n}=0\right.$ and $\left.x \varepsilon X_{i}\right\}$. Observe that $X_{i}=X_{i 1} \cup X_{i 2} \cup \cdots$; therefore, since X_{i} is of category 2 and $X_{i n} \subset X_{i, n+1}$, there is an n so that both $X_{1 n}$ and $X_{2 n}$ are of category 2.

Received May 28, 1962.

