## CARTESIAN FACTORIZATION OF COMPACT 3- AND 4-MANIFOLDS

By C. H. Edwards, Jr.

1. Introduction. R. H. Bing [1] has proved that a topological space is a 3 -cell if its cartesian product with an interval is a 4 -cell. In §2 Bing's proof is generalized to show that a space is a compact 3 -manifold if its product with an interval is a compact 4-manifold (by an $n$-manifold will be meant a connected separable metric space, each of whose points has a neighborhood whose closure is a topological $n$-cell).

A non-degenerate topological space is said to be prime if it cannot be expressed as a cartesian product of two non-degenerate spaces. It is proved in §3 that each compact 3 -manifold which is not a cube with handles has a topologically unique factorization into prime factors. In $\S 4$ the factorization of a compact 4 -manifold into 2 -dimensional factors is discussed.
2. Division of a compact 4 -manifold by an interval. Suppose that $Y$ is a space whose cartesian product $M=Y \times I$ with the interval $I=[0,1]$ is a compact $(n+1)$-manifold. A sufficient number of properties of $Y$ will be established to imply, in the case $n=3$, that $Y$ is a compact 3 -manifold.

By the interior of $M$ is meant the set of those points of $M$ which have neighborhoods homeomorphic to Euclidean $(n+1)$-space, and by the boundary of $M$ is meant $M$ - Int $M$. A compact manifold is called closed or bounded according as its boundary is empty or non-empty respectively. $M$ is a bounded $(n+1)$ manifold, because it has an interval as a factor [10], and each of the components of $\mathrm{Bd} M$ is a closed $n$-manifold.

Proposition 1. Each of $Y \times 0$ and $Y \times 1$ is the closure of an open subset of $\mathrm{Bd} M$.

Therefore $Y$ can be regarded as a subset of Bd $M$, with $\mathrm{Bd} Y$ and Int $Y$ denoting the boundary and interior respectively of $Y$ in $\mathrm{Bd} M$.

Proposition 2. $\quad \mathrm{Bd} M=(Y \times 0) \cup(Y \times 1) \cup(\operatorname{Bd} Y \times(0,1))$.
Propositions 1 and 2 follow by elementary invariance of domain arguments identical to those used in the proofs of Lemmas 1 through 5 of [1]. If $\mathrm{Bd} Y$ is empty, then Proposition 2 implies immediately that $Y$ is a closed $n$-manifold, while if $\mathrm{Bd} Y$ is non-empty, then $\mathrm{Bd} M$ is connected.

Proposition 3. Bd $Y$ has a finite number of components, each of which is a Peano continuum.

Proof. By Proposition 2, $\operatorname{Bd} Y \times(0,1)$ is an open subset of the closed $n$-manifold $\mathrm{Bd} M$, and is therefore locally connected. If $C$ is a component of

Received June 8, 1962. This research was supported in part by the National Science Foundation, Grant G-11665.

