THE GROUP G'/G'' OF A KNOT GROUP G

BY R. H. CROWELL

1. Algebraic theory. The main theorems of this paper are generalizations of some results of Rapaport [6]. The title reflects my interest in the application to knot theory, which is done in §3.

Let H be an infinite cyclic multiplicative group generated by t, and denote the integral group ring by ZH. Throughout this paper A is a ZH-module which has an $n \times n$ relation matrix $M = (m_{ij}(t))$ with

$$\Delta(t) = \det M = c_d t^d + \cdots + c_1 t + c_0, \qquad c_0 c_d \neq 0.$$

The assertion that A has a relation matrix $(m_{ij}(t))$ means that there exists an exact sequence of ZH-homomorphisms

(1)
$$F_2 \xrightarrow{d_2} F_1 \xrightarrow{d_1} A \to 0,$$

where F_1 and F_2 are free ZH-modules with bases (x_1, \dots, x_n) and (y_1, \dots, y_n) respectively, and $d_2y_i = \sum_{i=1}^n m_{ii}(t)x_i$, $i = 1, \dots, n$.

THEOREM (1.1). Let R be any overring of the integers in which c_0 and c_d are units. Then $R \bigotimes_Z A$ is a finitely generated R-module.

By taking for R the field Q of rational numbers, we shall obtain

THEOREM (1.2)
$$\operatorname{rank} A = d.$$

By the rank of A we mean the dimension of the vector space $Q \otimes_z A$, which equals the cardinality of any maximal set of Z-linearly independent elements of A.

Denote by R_{Δ} the ring consisting of all $r \in Q$ such that $r = i/c_0^i c_d^k$, where $i, j, k \in \mathbb{Z}$. Obviously R_{Δ} is the smallest ring lying between \mathbb{Z} and Q in which c_0 and c_d are units.

THEOREM (1.3). If g.c.d. $(c_0, \dots, c_d) = 1$, then A is a torsion free Z-module. In the remainder of this section it is assumed that R is an arbitrary ring for which $Z \subset R \subset Q$ and that A, as a Z-module, is torsion free.

THEOREM (1.4). If $R \otimes_z A$ is a finitely generated R-module, then c_0 and c_d are units of R (i.e., $R_{\Delta} \subset R$) and

$$R \bigotimes_{Z} A = \bigoplus_{i=1}^{d} R.$$

Consider the map $\varphi : A \to R \bigotimes_z A$ given by $\varphi a = 1 \bigotimes a$. When is φ an isomorphism and $R \bigotimes_z A$ finitely generated? A necessary condition is that

Received June 18, 1962. I wish to thank Professors Fox, Milnor, Moore, and Trotter for their helpful suggestions during this work, which was done while I was at Princeton on a leave of absence from Dartmouth sponsored jointly by a Dartmouth College Faculty Fellowship and the ONR.