DETERMINATION OF AN UNKNOWN COEFFICIENT IN A PARABOLIC DIFFERENTIAL EQUATION

By J. R. Cannon

1. Introduction. In [3], B. F. Jones considered the problem of determining the conductivity of a medium if the conductivity was known a priori to be a function of time only. Specifically, Jones treated the problem

$$
\left\{\begin{array}{lll}
\quad u_{t}=a(t) u_{x x}, & 0<x<1, & 0<t<T \tag{1.1}\\
u(0, t)=f_{1}(t), & 0<t<T, & f_{1}(0)=0 \\
u(1, t)=f_{2}(t), & 0 \leq t<T, & f_{2}(0)=0 \\
u(x, 0)=0, & 0 \leq x \leq 1, & \\
-a(t) \lim _{x \not 0} u_{x}(x, t)=g(t), & 0<t<T, &
\end{array}\right.
$$

where $a(t)$ is the unknown conductivity. Jones gave conditions on the data $f_{1}(t), f_{2}(t)$, and $g(t)$ which enabled him to prove existence and uniqueness of a solution (a pair of functions $u(x, t)$ and $a(t)$ which satisfy (1.1)) of (1.1).

In this article a different approach to the problem of determining the conductivity $a(t)$ is considered. This approach yields a simple analysis of the existence and uniqueness problem. It also yields a numerical technique of approximating $a(t)$ [1]. Consider the problem

$$
\begin{cases}\multicolumn{1}{r}{u_{t}=a(t) u_{x x},} & 0<x<1, \quad 0<t<T, \tag{1.2}\\ u(0, t) \equiv \varphi_{0}, & 0 \leq t<T, \\ u(1, t)=\psi(t), & 0 \leq t<T, \\ u(x, 0)=f(x), & 0 \leq x \leq 1, \quad f(0)=\varphi_{0}, \quad f(1)=\psi(0), \\ a(t) \lim _{x \downarrow 0} u_{x}(x, t)=h(t), & 0<t<T,\end{cases}
$$

where $\psi(t), f(x)$ and $h(t)$ are known continuous functions of their arguments, and φ_{0} is a given constant. From physical experience, the conductivity is assumed to be positive for all time. A solution to (1.2) is defined as follows:

Definition 1.1. A pair of functions $u(x, t)$ and $a(t)$ is a solution of (1.2) if and only if the following conditions are satisfied:
(a) $a(t)$ is positive and continuous for $0 \leq t<T$;
(b) $u(x, t)$ is continuous in (x, t) for $0 \leq x \leq 1,0 \leq t<T$;

Received March 26, 1962. Now at Brookhaven National Laboratory, Upton, L. I., New York.

