INVARIANT SUBSPACES OF TRIDIAGONAL OPERATORS

By P. L. Duren

1. Introduction. The spectral resolution of a self-adjoint operator is essentially an analysis of the entire space as a direct sum of subspaces in each of which the operator is a constant multiple of the identity. A similar decomposition is available for normal operators, but not for linear operators in general. In recent years many investigations of non-normal operators have been directed toward more modest ends: (1) location and classification of the spectrum; and (2) description of the invariant subspaces.

One of the outstanding results of the second type is Beurling's characterization [2] of the invariant subspaces of the shift operator

$$
\begin{equation*}
S:\left(x_{0}, x_{1}, x_{2}, \cdots\right) \rightarrow\left(x_{1}, x_{2}, x_{3}, \cdots\right) \tag{1}
\end{equation*}
$$

in the Hilbert space l_{2} of complex square-summable sequences. An equivalent problem, Beurling observes, is to describe the invariant subspaces of the multiplication operator

$$
\begin{equation*}
M: F(w) \rightarrow w F(w) \tag{2}
\end{equation*}
$$

in the space H_{2} of analytic functions in the unit disk. This is accomplished through a canonical factorization $F(w)=F_{0}(w) F_{1}(w)$ of each function $F(w) \varepsilon H_{2}$ into the product of its inner factor

$$
F_{0}(w)=B(w) \exp \left\{-\int_{0}^{2 \pi} \frac{e^{i t}+w}{e^{i t}-w} d \mu(t)\right\}
$$

and its outer factor

$$
F_{1}(w)=e^{i \beta} \exp \left\{\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|F\left(e^{i t}\right)\right| \frac{e^{i t}+w}{e^{i t}-w} d t\right\}
$$

Here $B(w)$ is a Blaschke product formed from the zeros of $F(w)$, and μ is a non-negative singular measure. (We implicitly assume $F(w) \neq 0$.)

Beurling introduces a lattice structure into the set of inner functions by defining a notion of divisibility as follows. Let F_{0}, G_{0} be inner functions constructed with zeros $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and measures μ, ν, respectively. Then F_{0} is a divisor of G_{0} if and only if $\left\{a_{n}\right\}$ is a subset of $\left\{b_{n}\right\}$ and the set function $\mu \leq \nu$. Any two inner functions F_{0} and G_{0} have, with obvious meanings, a greatest common divisor $F_{0} \wedge G_{0}$ and a least common multiple $F_{0} \vee G_{0}$.

For any fixed $F \varepsilon H_{2}$, the subspace $\mathcal{P}[F]$ spanned by the iterates $\left\{M^{n} F\right\}_{{ }_{0}^{\infty}}^{\infty}$ is certainly invariant under M. Beurling proves that every invariant subspace is of this type, and that the lattice of invariant subspaces of M is isomorphic

Received April 26, 1962. This work was supported in part by Office of Naval Research Contract Nonr-225(11) at Stanford University.

