INVARIANT SUBSPACES OF TRIDIAGONAL OPERATORS

By P. L. DUREN

1. Introduction. The spectral resolution of a self-adjoint operator is essentially an analysis of the entire space as a direct sum of subspaces in each of which the operator is a constant multiple of the identity. A similar decomposition is available for normal operators, but not for linear operators in general. In recent years many investigations of non-normal operators have been directed toward more modest ends: (1) location and classification of the spectrum; and (2) description of the invariant subspaces.

One of the outstanding results of the second type is Beurling's characterization [2] of the invariant subspaces of the shift operator

(1)
$$S: (x_0, x_1, x_2, \cdots) \rightarrow (x_1, x_2, x_3, \cdots)$$

in the Hilbert space l_2 of complex square-summable sequences. An equivalent problem, Beurling observes, is to describe the invariant subspaces of the multiplication operator

$$(2) M: F(w) \to wF(w)$$

in the space H_2 of analytic functions in the unit disk. This is accomplished through a canonical factorization $F(w) = F_0(w)F_1(w)$ of each function $F(w) \in H_2$ into the product of its *inner factor*

$$F_{0}(w) = B(w) \exp \left\{-\int_{0}^{2\pi} \frac{e^{it} + w}{e^{it} - w} d\mu(t)\right\}$$

and its outer factor

$$F_{1}(w) = e^{i\beta} \exp \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} \log |F(e^{it})| \frac{e^{it} + w}{e^{it} - w} dt \right\}.$$

Here B(w) is a Blaschke product formed from the zeros of F(w), and μ is a non-negative singular measure. (We implicitly assume $F(w) \neq 0$.)

Beurling introduces a lattice structure into the set of inner functions by defining a notion of *divisibility* as follows. Let F_0 , G_0 be inner functions constructed with zeros $\{a_n\}$, $\{b_n\}$ and measures μ , ν , respectively. Then F_0 is a divisor of G_0 if and only if $\{a_n\}$ is a subset of $\{b_n\}$ and the set function $\mu \leq \nu$. Any two inner functions F_0 and G_0 have, with obvious meanings, a greatest common divisor $F_0 \wedge G_0$ and a least common multiple $F_0 \vee G_0$.

For any fixed $F \in H_2$, the subspace $\mathcal{O}[F]$ spanned by the iterates $\{M^nF\}_0^{\infty}$ is certainly invariant under M. Beurling proves that every invariant subspace is of this type, and that the lattice of invariant subspaces of M is isomorphic

Received April 26, 1962. This work was supported in part by Office of Naval Research Contract Nonr-225(11) at Stanford University.