THE n-th DERIVATIVE OF A CLASS OF FUNCTIONS

By David Zeitlin

1. Recently, Carlitz [1], using Lagrange's formula (see [4; 125]), has shown, for arbitrary r, that

$$
\begin{equation*}
\left[\frac{d^{n}}{d x^{n}}\left(\frac{x-1}{x^{r}-1}\right)^{n+1}\right]_{x=1}=(1-r)(1-2 r) \cdots(1-n r) r^{-n-1} \tag{1.1}
\end{equation*}
$$

In this paper, we will establish formulas for the n-th derivative of a class of functions, which, as one application, yield (1.1) as a special case, as well as other identities involving Bernoulli and Stirling numbers.
2. The following theorem provides a generalization of (1.1):

Theorem 1. For all real $r \neq 0$, and $m \geq n+1, n=0,1, \cdots$,

$$
\begin{align*}
& {\left[\frac{d^{n}}{d x^{n}}\left(\frac{x-1}{x^{r}-1}\right)^{m}\right]_{x=1}} \tag{2.1}\\
& \quad=\frac{n!(-1)^{n}}{r} \sum_{s=m-n-1}^{m-1}(-1)^{s} \sum_{i=0}^{m-n-1}(-1)^{i}\binom{m-n-1}{j}\binom{(j+1) / r}{s}
\end{align*}
$$

for $m=n+1$, (2.1) reduces to (1.1).
Proof. By Lagrange's general formula [4, 125], if $w=x / \phi(x), \phi(0) \neq 0$, then

$$
\begin{equation*}
\frac{f(x)}{1-w \phi^{\prime}(x)}=\sum_{k=0}^{\infty} \frac{w^{k}}{k!}\left[\frac{d^{k}}{d x^{k}}\left\{f(x)(\phi(x))^{k}\right\}\right]_{x=0} \tag{2.2}
\end{equation*}
$$

If we choose $\phi(x)=x /\left[(x+1)^{r}-1\right], f(x)=[\phi(x)]^{m-n}$, then $w=(x+1)^{r}-1$, and

$$
\begin{equation*}
\frac{f(x)}{1-w \phi^{\prime}(x)}=\frac{1}{r}\left(\frac{x+1}{w+1}\right)\left(\frac{x}{w}\right)^{m-n-1}=\sum_{k=0}^{\infty} \frac{w^{k}}{k!}\left[\frac{d}{d x^{k}}\{\phi(x)\}^{m-n+k}\right]_{x=0} . \tag{2.3}
\end{equation*}
$$

We now proceed to expand the left-hand side of (2.3) into a power series in w. Now

$$
\begin{aligned}
x+1=(w & +1)^{1 / r}=\sum_{k=0}^{\infty}\binom{1 / r}{k} w^{k}, \quad|w|<1, \quad \text { and } \\
(x+1) x^{m-n-1}=(x+1) & (x+1-1)^{m-n-1} \\
& =\sum_{i=0}^{m-n-1}(-1)^{m-n-1-i}\binom{m-n-1}{j}(x+1)^{j+1} \\
& =\sum_{k=0}^{\infty}\left[\sum_{i=0}^{m-n-1}(-1)^{m-n-1-i}\binom{m-n-1}{j}\binom{j+1) / r}{k}\right] w^{k}
\end{aligned}
$$

Received May 4, 1962; in revised form, June 20, 1962.

