EMBEDDING A REGULAR NEIGHORHOOD OF THE SINGULAR LOCUS OF A 2 DIMENSIONAL POLYHEDRON IN E ${ }^{3}$

By Thomas R. Brahana

The purpose of this paper is to state combinatorial conditions which are necessary and sufficient for the existence of semi-linear embeddings of a regular neighborhood of a component of the singular locus of a 2 dimensional polyhedron in E^{3}.

It is known that a satisfactory solution of the general problem of embedding 2 dimensional polyhedra in E^{3} would determine the correctness of the Poincaré conjecture that a compact simply connected 3 manifold is a 3 sphere, [1], [4]. The conditions for the theorem stated here are not elegant. On the other hand, one can use the methods to determine the embeddability of many 2 polyhedra without excessive work. My interest in this problem resulted from being in the vicinity of R. H. Bing, and talking with him.

1. Introduction. Let K be a 2 dimensional compact connected polyhedron, and L the singular locus of K (that is, L consists of all points of K which do not have neighborhoods homeomorphic with an open disk). The components L_{1}, \cdots, L_{n} of L form a subpolyhedron in the 1 skeleton of any triangulation of K. Each such component L_{i} has regular neighborhoods M_{i} in K, (with respect to a triangulation t), and the boundary of M_{i} is a collection $\left\{S_{i \alpha}\right\}$ of disjoint 1 spheres. It is no restriction to assume that $\bar{M}_{i} \cap \bar{M}_{i}=\varnothing, i \neq j$. Each \bar{M}_{i} is homeomorphic to the mapping cylinder C_{f} of a semi-linear map f : $\bigcup_{\alpha} S_{i \alpha} \rightarrow L_{i}$, where each $S_{i \alpha}$ is a 1 sphere, $S_{i \alpha} \cap S_{i \beta}=\varnothing, \alpha \neq \beta$, and L_{i} a 1 dimensional polyhedron, or a point. In what follows we shall discuss the embedding of mapping cylinders of the type described.

Thus, let $\left\{S_{\alpha}\right\}$ be a collection of disjoint 1 spheres, and denote $\bigcup_{\alpha} S_{\alpha}$ by S. Let Y be a 1 dimensional polyhedron and $f: S \rightarrow Y$ a semi-linear map. Recall that the mapping cylinder C_{f} is the set $\{(S \times I) \cup Y\} / \varphi$, where φ is the identification function which identifies $(x, 1) \varepsilon(S \times I)$ and $f(x) \varepsilon Y$. The set $(S \times 1) / \varphi$ is homeomorphic with the image of f. The natural embedding of Y in C_{f} is defined by $p(y)=\{y\} / \varphi$, and the natural embedding of S in C_{f} by $q(x)=$ $\{(x, 0)\} / \varphi$. The mapping cylinder can be triangulated so that p and q are semi-linear embeddings.

Let y_{0} be a vertex of Y. Then $p\left(y_{0}\right)$ is a vertex of C_{f}, and $p(Y)$ a subpolyhedron of C_{f}. Since Y (unembedded) is rarely mentioned, we ease the notation by writing y for $p(y)$. Thus the star of $p\left(y_{0}\right)$ in C_{f} with respect to a triangulation t of C_{f} will be denoted by (st $y_{0}: C_{f}, t$) or briefly (st $y_{0}: C_{f}$). The boundary of (st $y_{0}: C_{f}$) is a 1 dimensional polyhedron, call it $K_{f}\left(y_{0}\right)$.

Received April 4, 1962. This research was supported by N.S.F. Grant G10096.

