A PROBLEM IN PARTITIONS

By L. Carlitz

1. We consider partitions of the bipartite (n, m)

$$
\left\{\begin{array}{l}
n=n_{1}+n_{2}+n_{3}+\cdots \tag{1.1}\\
m=m_{1}+m_{2}+m_{3}+\cdots
\end{array}\right.
$$

where the n_{i}, m_{i} are non-negative integers that satisfy the conditions

$$
\begin{equation*}
\min \left(n_{i}, m_{i}\right) \geq \max \left(n_{i+1}, m_{i+1}\right) \quad(j=1,2,3, \cdots) . \tag{1.2}
\end{equation*}
$$

For brevity we may write (1.2) in the form

$$
\left(n_{i}, m_{i}\right) \geq\left(n_{i+1}, m_{i+1}\right)
$$

Let $\pi(n, m)$ denote the number of partitions (1.1) that satisfy (1.2) and let $\pi(n, m \mid a, b)$ denote the number of these partitions that in addition satisfy

$$
\begin{equation*}
(a, b) \geq\left(n_{1}, m_{1}\right) \tag{1.3}
\end{equation*}
$$

In the latter case we may say that the largest "part" does not exceed (a, b).
Following Chaundy [2] we consider the recurrence

$$
\begin{equation*}
\xi_{n m}=\sum_{r, s=0}^{\min (n, m)} x^{r} y^{s} \xi_{r s}, \tag{1.4}
\end{equation*}
$$

where $\xi_{n m}$ is a power series in x, y. If we put

$$
\begin{equation*}
\xi=\xi_{\infty \infty}, \tag{1.5}
\end{equation*}
$$

then in the limit (1.4) becomes

$$
\begin{equation*}
\xi=\sum_{r, s=0}^{\infty} x^{r} y^{s} \xi_{r s} . \tag{1.6}
\end{equation*}
$$

It follows from (1.6) and (1.4) that ξ is the generating function of partitions (1.1) that satisfy (1.2); similarly $\xi_{a b}$ is the generating function of these partitions that in addition satisfy (1.3). We may therefore write

$$
\begin{gather*}
\xi=\sum_{r, s=0}^{\infty} \pi(r, s) x^{r} y^{s} \tag{1.7}\\
\xi_{a b}=\sum_{r, s=0}^{\infty}(r, s \mid a, b) x^{r} y^{s} . \tag{1.8}
\end{gather*}
$$

We define the generating functions
Received May 2, 1962. Supported in part by National Science Foundation grant G16485.

