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1. Introduction. Let us say that a function which is regular in the open
unit disk D has finite segmental variation at a point e (0 real) provided every
line segment connecting e to a point of D is mapped onto a rectifiable curve
by the function. If the radius terminating at e is carried onto a rectifiable
curve, we shall use Rudin’s terminology [9] and say that the function has finite
radial variation at e.

Clearly, at a given point e, finite segmental variation entails finite radial
variation; and, in turn, finite radial variation entails the existence of a (finite)
radial limit.

Seidel and Walsh [10; 143] proved that, if a function is regular and univalent
in D, it has finite segmental variation at almost all points of the unit circum-
ference C.

Beurling [1] proved that, if a function is regular in D and has a finite Dirichlet
integral, then it has finite radial variation at each point of C except on a set
whose outer capacity is zero. Subsequently, Tsuji (see [11; 344]) showed that
"finite radial variation" may be replaced by "finite segmental variation" in the
statement of Beurling’s theorem.

In this paper, we shall consider a well-known class of functions whose membees
are not univalent and do not have finite Dirichlet integrals, namely, (infinitr)
Blaschke products.
We remind the reader that a sequence {z} of complex numbers satisfying

the conditions

(1.1) 0 < [z,,] < 1 and (1 --]$l) < oo

is called a Blaschke sequence and that the associated function of the form

B(z; H b(z;

where

(1.3) b(z z) z. z
z, 1 z

is called a Blaschke product. (For a general discussion of Blaschke products,
see [7; 49-52] and [12; 271-285].) Throughout this paper, we shall, for obvious
reasons, consider only infinite Blaschke products, that is, Blaschke products
whose associated Blaschke sequences have infinitely many elements.
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