INFINITE SERIES AND NONNEGATIVE VALUED INTERVAL FUNCTIONS

By William D. L. Appling

1. Introduction. In this paper we extend a previous result of the author [1] and demonstrate (Theorem 2) that if H is a real nonnegative-valued function of subintervals of the number interval $[a, b]$, then the integral (§3)

$$
\int_{[a, b]} H(I)
$$

exists if and only if for each real-valued nondecreasing function m on $[a, b]$ there is a number p such that $0<p<1$ and the integral

$$
\int_{[a, b]}[H(I)]^{p}[d m]^{1-p}
$$

exists.
2. A lemma concerning infinite series. In this section we prove a preliminary lemma about infinite series with nonnegative-valued terms.

Lemma S. If $\left\{a_{k}\right\}_{k=1}^{\infty}$ is a sequence of nonnegative numbers whose sum diverges, then there is a sequence $\left\{e_{k}\right\}_{k=1}^{\infty}$ of nonnegative numbers whose sum converges such that $\sum a_{k}^{p} e_{k}^{1-p}$ diverges for all p in $(0,1)$.

Proof. If v is in $(0,1)$, then by the Banach-Steinhaus theorem there is a sequence $\left\{c_{k}\right\}_{k=1}^{\infty}$ of nonnegative numbers such that $\sum c_{k} \leq 1$ and $\sum a_{k}^{v} c_{k}^{1-v}=\infty$. For each positive integer k we let $b_{k}=\min \left\{a_{k}, c_{k}\right\}$, so that $b_{k} \leq a_{k}$ and $\sum b_{k} \leq$ $\sum c_{k} \leq 1$. Considering the set of all j such that $c_{i} \leq a_{i}$ and the set of all j^{\prime} such that $a_{i^{\prime}}<c_{i^{\prime}}$, we see that $\sum a_{k}^{v} b_{k}^{1-v}=\sum a_{j}^{v} c_{i}^{1-v}+\sum a_{i^{\prime}} \geq \sum a_{k}^{v} c_{k}^{1-v}-$ $\sum a_{i^{v}}^{v} c_{i^{\prime}}^{1-v} \geq \sum a_{k}^{v} c_{k}^{1-v}-\sum c_{i^{\prime}}=\infty$.

Therefore for each positive integer $q>1$ there is a sequence $\left\{b_{k}^{(\alpha)}\right\}_{k=1}^{\infty}$ of nonnegative numbers such that $b_{k}^{(q)} \leq a_{k}$ for all $k, \sum b_{k}^{(q)} \leq 1$, and $\sum a_{k}^{1 / q}$ $\left[b_{k}^{(\alpha)}\right]^{1-1 / q}=\infty$.

For each positive integer k, we let $e_{k}=\sum_{a=2}^{\infty} 2^{-a} b_{k}^{(\alpha)}$, so that $e_{k} \leq a_{k}$, and for each positive integer $n, \sum_{k=1}^{n} e_{k}=\sum_{k=1}^{n} \sum_{q=2}^{\infty} 2^{-q} b_{k}^{(q)}=\sum_{q=2}^{\infty} 2^{-q}\left[\sum_{k=1}^{n} b_{k}^{(\alpha)}\right] \leq 1$.

If p is in $(0,1)$, then there is a positive integer q such that $q>1$ and $1 / q<p$, so that $\sum a_{k}^{p} e_{k}^{1-p} \geq \sum a_{k}^{1 / \alpha} e_{k}^{1-1 / a} \geq\left(2^{-q}\right)^{1-1 / q} \sum a_{k}^{1 / q}\left(b_{k}^{(q)}\right)^{1-1 / q}=\infty$.
3. Preliminary definitions and theorems concerning real-valued interval functions. Throughout this paper all integrals discussed are Hellinger (2) type limits of the appropriate sums.

Suppose $[a, b]$ is a number interval.
Received February 26, 1962.

