THE INTEGRAL OF A GENERALIZED ALMOST PERIODIC FUNCTION

By RAOUF Doss

We shall denote by B the class of functions almost periodic in the sense of Besicovitch and by I_B the class of integrals of functions of B, i.e. the class of functions F(x) of the form $F(x) = \int_0^x f(t) dt$, where $f(x) \in B$. If B_0 and S are the classes of functions almost periodic in the sense of Bohr and Stepanoff, we define in an analogous way I_{B_0} and I_S .

We first prove (Theorem 1) the following statement:

Let $F(x) \in I_B$. In order that $F(x) \in B$ it is necessary and sufficient that

$$\lim_{L\to\infty} \bar{M}_x \bigg\{ | L^{-1} \int_x^{x+L} F(t) dt - L^{-1} \int_0^L F(t) dt | \bigg\} = 0.$$

Here M denotes the upper mean value.

Next let $C_B(I_B)$ be the closure of the class I_B with the Besicovitch distance, i.e. $F(x) \in C_B(I_B)$ if there exists a sequence of functions $F_m(x) \in B$ such that $\lim \overline{M}\{|F(x) - F_n(x)|\} = 0$, where $n \to \infty$. In a similar way we define $C_{B_o}(I_{B_o})$ and $C_S(I_S)$.

We prove the following theorem:

In order that $F(x) \in C_B(I_B)$ it is necessary and sufficient that F(x) be of the form $F(x) = \int_0^x f(t) dt + \phi(x)$, where $f(x), \phi(x) \in B$. This may be written algebraically

$$C_B(I_B) = I_B + B.$$

This theorem has analogues for the classes $C_{B_o}(I_{B_o})$ and $C_s(I_s)$. For example see [1]:

$$C_{B_0}(I_{B_0}) = I_{B_0} + B_0; \quad C_s(I_s) = I_s + S.$$

THEOREM 1. Let $f(x) \in B$ and $F(x) = \int_0^x f(t) dt$. In order that $F(x) \in B$ it is necessary and sufficient that

(1)
$$\lim_{L\to\infty} \bar{M}_x \bigg\{ |L^{-1} \int_x^{x+L} F(t) dt - L^{-1} \int_0^L F(t) dt | \bigg\} = 0.$$

Proof. The *necessity* of (1) is a general feature of any function $F(x) \in B$. For an easy proof see [2].

Sufficiency. We first show that F(x) is uniformly B-summable, i.e. that to every $\epsilon > 0$ we can associate a $\delta > 0$ such that

$$\bar{\mu}(E) < \delta$$
 implies $\bar{M}^{E}\{|F(x)|\} < \epsilon$.⁽¹⁾

Received March 5, 1962.