SOME ARITHMETIC PROPERTIES OF A SPECIAL SEQUENCE OF POLYNOMIALS IN THE GAUSSIAN FIELD

By L. Carlitz
To Professor H. S. Vandiver on his eightieth birthday

1. Kelisky [2] has defined a set of rational integers T_{n} by means of

$$
\begin{equation*}
\sum_{n=0}^{\infty} T_{n} \frac{x^{n}}{n!}=\exp (\arctan x) \tag{1.1}
\end{equation*}
$$

and proved in particular that

$$
T_{p} \equiv\left\{\begin{array}{lll}
0 & (\bmod p) & (p=4 n+1) \tag{1.2}\\
2 & (\bmod p) & (p=4 n+3)
\end{array}\right.
$$

where p is a prime. More generally the writer [1] has defined the polynomial $T_{n}(z)$ by means of

$$
\begin{equation*}
\sum_{n=0}^{\infty} T_{n}(z) \frac{x^{n}}{n!}=\exp (z \arctan x), \tag{1.3}
\end{equation*}
$$

so that $T_{n}=T_{n}(1)$, and proved in particular that if $a+b i$ is a number of the Gaussian field that is integral $(\bmod p)$, where p is a prime, then

$$
T_{p}(a+b i) \equiv\left\{\begin{array}{rll}
0 & (\bmod p) & (p=4 n+1) \tag{1.4}\\
2 a & (\bmod p) & (p=4 n+3)
\end{array}\right.
$$

On examining some numerical data Kelisky has conjectured that if $p=16 n^{2}+1$ is prime, then

$$
\begin{equation*}
\frac{1}{p} T_{p} \equiv-\frac{1}{2} \quad(\bmod p) \tag{1.5}
\end{equation*}
$$

In the present paper we shall determine the residue of $T_{p}(a+b i)\left(\bmod p^{2}\right)$, where p is a prime $\equiv 1(\bmod 4)$ and $a+b i$ is a number of the Gaussian field that is integral $(\bmod p)$. In particular we shall show that the conjecture (1.5) is correct. A summary of the results obtained will be found in $\S 7$ below.

In addition we shall determine the residue of $T_{p}(\alpha)\left(\bmod p^{2}\right)$, where $p \equiv 3$ $(\bmod 4)$ and α is either real or purely imaginary. We find that

$$
\begin{gather*}
T_{p}(a) \equiv \frac{a}{2^{p-1}} \prod_{r=1}^{\frac{1}{2}(p-1)}\left(a^{2}+16 r^{2}\right)+a\left(2^{p}-2\right) \quad\left(\bmod p^{2}\right), \tag{1.6}\\
T_{p}(i b) \equiv i\left\{b+p-2 k-(-1)^{k} p\right\} \quad\left(\bmod p^{2}\right) \tag{1.7}
\end{gather*}
$$

Received January 17, 1962. Supported in part by National Science Foundation grant G16485.

