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1. Introduction. The present paper is concerned with linear vector ordinary
differential operators of the form

(1.1) L[y] ==. A(t)y’(t) -4- Ao(t)y(t) - b(t), t I: a <__ t <_ b,
where y(t) =---" (y(t)), (i 1, n), belongs to the class I(I) of a.c. (absolutely
continuous) vector functions on I, while the n n coefficient matrices Ao(t),
A(t), and n-dimensional vector function b(t) are such that A(t) is non-singular,
with A(t)Ao(t) and A(t)b(t) (Lebesgue) integrable on this interval.
For B(t) an n X n matrix measurable on I, and various Lebesgue linear

normed function spaces of n-dimensional vector functions, there are character-
ized the x(t) of minimum norm !Ft[x], and belonging to the set r defined by

(1.2) I’ {x(t) y(t) (I) with L[y] B(t)x(t), y(a) , y(b) },
where and are given n-dimensional constant vectors. In particular, if
B(t) is non-singular on I, the problem is that of determining y(t) (I) satisfying
y(a) , y(b) and such that B-(t)L[y] is an element of of minimum
norm. Another important instance is that of problems involving matrices
B(t) =--- [[ B,(t) ][, (i, 1, ..., n), such that

(1.3) B,,(t) =- O, (i j), B,,(t) 5(t, J’), (i 1,... n),

where t(t, J) is the characteristic function of a measurable subset J of 1’
and at least one of the J is of positive measure. In this case B(t) is idempotent
on I, (B(t) B(t)), and norm-reducing, (992[Bx] __< !Ft[x]), on each of the Lebesguo
spaces considered, and consequently the problem of determining x(t) of
minimum norm is solved by finding a y(t) of

{y(t) y(t) I(I), L,[y] 0 on I J’, (i 1, n)},
such that L[y] (L,[y]) is an element of of minimum norm. For a particular
Lebesgue function space, and real-valued operators (1.1), this latter problem has
been treated by Carter [3].

In 2 it is shown that the above described problem is equivalent to the de-
termination of an "extremal" solution of a corresponding finite moment prob-
lem, to which the general results of Hahn and Banach on linear functionals,
(see, for example, Dunford and Schwartz [5; 86]), are applicable. For the
Lebesgue function spaces under consideration the explicit solution of this
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