ORDINARY LINEAR DIFFERENTIAL OPERATORS OF MINIMUM NORM

By William T. Reid

1. Introduction. The present paper is concerned with linear vector ordinary differential operators of the form

$$
\begin{equation*}
L[y] \equiv A_{1}(t) y^{\prime}(t)+A_{0}(t) y(t)+b(t), \quad t \varepsilon I: \quad a \leq t \leq b \tag{1.1}
\end{equation*}
$$

where $y(t) \equiv\left(y_{i}(t)\right),(i=1, \cdots, n)$, belongs to the class $\mathfrak{A}(I)$ of a.c. (absolutely continuous) vector functions on I, while the $n \times n$ coefficient matrices $A_{0}(t)$, $A_{1}(t)$, and n-dimensional vector function $b(t)$ are such that $A_{1}(t)$ is non-singular, with $A_{1}^{-1}(t) A_{0}(t)$ and $A_{1}^{-1}(t) b(t)$ (Lebesgue) integrable on this interval.

For $B(t)$ an $n \times n$ matrix measurable on I, and various Lebesgue linear normed function spaces \mathbb{R} of n-dimensional vector functions, there are characterized the $x(t) \varepsilon \mathbb{R}$ of minimum norm $\mathfrak{M}[x]$, and belonging to the set Γ defined by

$$
\begin{equation*}
\Gamma=\left\{x(t) \mid \exists y(t) \varepsilon \mathfrak{A}(I) \quad \text { with } L[y]=B(t) x(t), y(a)=\xi^{a}, y(b)=\xi^{b}\right\} \tag{1.2}
\end{equation*}
$$ where ξ^{a} and ξ^{b} are given n-dimensional constant vectors. In particular, if $B(t)$ is non-singular on I, the problem is that of determining $y(t) \varepsilon \mathfrak{A}(I)$ satisfying $y(a)=\xi^{a}, y(b)=\xi^{b}$ and such that $B^{-1}(t) L[y]$ is an element of Ω of minimum norm. Another important instance is that of problems involving matrices $B(t) \equiv\left\|B_{i j}(t)\right\|,(i, j=1, \cdots, n)$, such that

(1.3) $\quad B_{i j}(t) \equiv 0, \quad(i \neq j), \quad B_{i i}(t)=\delta\left(t, J^{i}\right), \quad(i=1, \cdots, n)$,
where $\delta\left(t, J^{i}\right)$ is the characteristic function of a measurable subset J^{i} of I^{\prime} and at least one of the J^{i} is of positive measure. In this case $B(t)$ is idempotent on $I,\left(B(t) \equiv B^{2}(t)\right)$, and norm-reducing, $(\mathfrak{M}[B x] \leq \mathfrak{M}[x])$, on each of the Lebesgue spaces considered, and consequently the problem of determining $x(t) \varepsilon \mathbb{R}$ of minimum norm is solved by finding a $y(t)$ of

$$
\left\{y(t) \mid y(t) \varepsilon \mathfrak{A}(I), L_{i}[y]=0 \quad \text { on } \quad I-J^{i},(i=1, \cdots, n)\right\}
$$

such that $L[y]=\left(L_{i}[y]\right)$ is an element of \mathfrak{R} of minimum norm. For a particular Lebesgue function space, and real-valued operators (1.1), this latter problem has been treated by Carter [3].

In §2 it is shown that the above described problem is equivalent to the determination of an "extremal" solution of a corresponding finite moment problem, to which the general results of Hahn and Banach on linear functionals, (see, for example, Dunford and Schwartz [5; 86]), are applicable. For the Lebesgue function spaces under consideration the explicit solution of this

[^0]
[^0]: Received August 28, 1961. This research was sponsored by the Mathematical Sciences Directorate, Air Force Office of Scientific Research of the Air Research and Development Command, under Contract AF 49(638)-994.

