THE MAXIMUM NUMBER OF ZEROS IN THE POWERS OF AN INDECOMPOSABLE MATRIX

By Marvin Marcus and Frank May

I. Introduction. Let A be an n-square matrix with complex entries. A is called decomposable if there is a permutation matrix P such that $P A P^{T}$ is a subdirect sum. Otherwise A is called indecomposable.

In a recent conversation Dr. Seymour Haber posed the following question. Given an n-square indecomposable matrix A with complex entries, how many fixed positions (i, j), $1 \leq i, j \leq n$, can be zero in every positive integral power of A ? This problem has significance in certain combinatorial problems and, as will subsequently be shown in case A is normal, reduces to a familiar kind of question: namely, given an integral matrix H what kinds of 0,1 matrices B (if any) exist satisfying $B B^{T}=H$?

We remark that in order to check whether $\left(A^{k}\right)_{i j}=0, i \neq j, k=1,2, \cdots$, it suffices to examine $A, A^{2}, \cdots, A^{n-1}$ (Cayley-Hamilton).

As an example, let A be indecomposable, with non-negative entries, and positive trace. If $m \geq 2 n-2$, then each entry of A^{m} is positive [1]. On the other hand, if $P_{n}=\left(p_{i i}\right)$ denotes the n-square full cycle permutation matrix defined by

$$
p_{i 1}=\delta_{i n}, \quad p_{i j}=\delta_{i+1, i} \quad \text { if } \quad j>1,
$$

then the (i, j) entry of $\left(P_{n}\right)^{k}$ is both zero and one for infinitely many values of k. Of course, P_{n} is indecomposable.

In general, the question seems difficult to answer. However, in case A is an indecomposable normal matrix with distinct eigenvalues, our main result yields a realistic upper bound for the number of fixed positions that can be zero in every positive integral power of A (Theorem 4).
II. The combinatorial problem. Let x_{1}, \cdots, x_{t} be n-vectors, and denote by $\left\langle x_{1}, \cdots, x_{t}\right\rangle$ the space spanned by x_{1}, \cdots, x_{t}. If $A x_{i} \varepsilon\left\langle x_{1}, \cdots, x_{t}\right\rangle, i=$ $1, \cdots, t$, then $\left\langle x_{1}, \cdots, x_{t}\right\rangle$ is called an invariant subspace under A. We put $\epsilon_{\alpha}=\left(\delta_{\alpha 1}, \delta_{\alpha 2}, \cdots, \delta_{\alpha n}\right), \alpha=1, \cdots, n$.

We have immediately from the definition the
Lemma. A is decomposable if and only if for some $k, 1 \leq k \leq n,\left\langle\epsilon_{i_{1}}, \cdots, \epsilon_{i_{k}}\right\rangle$ is an invariant subspace under A.

If A is normal, then A^{*}, the conjugate transpose of A, is a polynomial in A. Denote by $Z(A)$ the set of positions $(i, j), 1 \leq i, j \leq n$, for which $\left(A^{k}\right)_{i j}=0$, $k=1,2, \cdots$. When A is normal, we see that for $i \neq j,(i, j) \varepsilon Z(A)$ if and

Received July 13, 1961. The work of the first author was supported in part by the Office of Naval Research.

