THE MAXIMUM NUMBER OF ZEROS IN THE POWERS OF AN INDECOMPOSABLE MATRIX ## By Marvin Marcus and Frank May I. Introduction. Let A be an n-square matrix with complex entries. A is called decomposable if there is a permutation matrix P such that PAP^{T} is a subdirect sum. Otherwise A is called indecomposable. In a recent conversation Dr. Seymour Haber posed the following question. Given an n-square indecomposable matrix A with complex entries, how many fixed positions (i, j), $1 \le i, j \le n$, can be zero in every positive integral power of A? This problem has significance in certain combinatorial problems and, as will subsequently be shown in case A is normal, reduces to a familiar kind of question: namely, given an integral matrix H what kinds of 0, 1 matrices B (if any) exist satisfying $BB^T = H$? We remark that in order to check whether $(A^k)_{ij} = 0$, $i \neq j$, $k = 1, 2, \dots$, it suffices to examine A, A^2, \dots, A^{n-1} (Cayley-Hamilton). As an example, let A be indecomposable, with non-negative entries, and positive trace. If $m \geq 2n - 2$, then each entry of A^m is positive [1]. On the other hand, if $P_n = (p_{ij})$ denotes the n-square full cycle permutation matrix defined by $$p_{i1} = \delta_{in}, \quad p_{ij} = \delta_{i+1,j} \quad \text{if} \quad j > 1,$$ then the (i, j) entry of $(P_n)^k$ is both zero and one for infinitely many values of k. Of course, P_n is indecomposable. In general, the question seems difficult to answer. However, in case A is an indecomposable normal matrix with distinct eigenvalues, our main result yields a realistic upper bound for the number of fixed positions that can be zero in every positive integral power of A (Theorem 4). II. The combinatorial problem. Let x_1, \dots, x_t be *n*-vectors, and denote by $\langle x_1, \dots, x_t \rangle$ the space spanned by x_1, \dots, x_t . If $Ax_i \in \langle x_1, \dots, x_t \rangle$, $i = 1, \dots, t$, then $\langle x_1, \dots, x_t \rangle$ is called an *invariant subspace* under A. We put $\epsilon_{\alpha} = (\delta_{\alpha 1}, \delta_{\alpha 2}, \dots, \delta_{\alpha n}), \alpha = 1, \dots, n$. We have immediately from the definition the LEMMA. A is decomposable if and only if for some $k, 1 \leq k \leq n, \langle \epsilon_{i_1}, \dots, \epsilon_{i_k} \rangle$ is an invariant subspace under A. If A is normal, then A^* , the conjugate transpose of A, is a polynomial in A. Denote by Z(A) the set of positions (i, j), $1 \le i, j \le n$, for which $(A^k)_{i,j} = 0$, $k = 1, 2, \cdots$. When A is normal, we see that for $i \ne j$, $(i, j) \in Z(A)$ if and Received July 13, 1961. The work of the first author was supported in part by the Office of Naval Research.