GENERATING FUNCTIONS FOR POWERS OF CERTAIN SEQUENCES OF NUMBERS

By L. Carlitz

1. Introduction. The Fibonacci numbers f_{n} may be defined by

$$
f_{0}=f_{1}=1, \quad f_{n}=f_{n-1}+f_{n-2} \quad(n \geq 2)
$$

Their generating function is

$$
f_{1}(x)=\sum_{n=0}^{\infty} f_{n} x^{n}=\left(1-x-x^{2}\right)^{-1}
$$

More generally we may put

$$
f_{k}(x)=\sum_{n=0}^{\infty} f_{n}^{k} x^{n} .
$$

Riordan [2] has proved that $f_{k}(x)$ satisfies the following recurrence relation:

$$
\begin{equation*}
\left(1-a_{k} x+(-1)^{k} x^{2}\right) f_{k}(x)=1+k x \sum_{i=1}^{[k / 2]}(-1)^{i} \frac{a_{k j}}{j} f_{k-2 j}\left((-1)^{i} x\right)(k \geq 1) \tag{1.1}
\end{equation*}
$$

where

$$
a_{1}=1, \quad a_{2}=3, \quad a_{k}=a_{k-1}+a_{k-2} \quad(k \geq 3)
$$

and $a_{k j}$ is defined by means of

$$
\left(1-x-x^{2}\right)^{-i}=\sum_{k=2 i}^{\infty} a_{k i} x^{k-2 j}
$$

In the present paper we consider the numbers u_{n} defined by

$$
u_{0}=1, \quad u_{1}=p, \quad u_{n}=p u_{n-1}-q u_{n-2} \quad(n \geq 2)
$$

where $p^{2}-4 q \neq 0$. We put

$$
u_{k}(x)=\sum_{n=0}^{\infty} u_{n}^{k} x^{n}
$$

so that

$$
u_{1}(x)=\left(1-p x+q x^{2}\right)^{-1}
$$

Generalizing (1.1) we show first that

$$
\begin{equation*}
\left(1-v_{k} x+q^{k} x^{2}\right) u_{k}(x)=1+k x \sum_{r=1}^{\mid k / 21} \frac{1}{r} q^{r} a_{k r} u_{k-2 r}\left(q^{r} x\right) \quad(k \geq 1) \tag{1.2}
\end{equation*}
$$

Received November 19, 1961. Supported in part by National Science Foundation grant G16485.

