# MULTIPLE TRIGONOMETRIC SERIES OF A PARTICULAR TYPE 

By George Cross

1. Introduction. The problems of uniqueness, representation, and localization of multiple trigonometric and Fourier series have been considered by Bochner [2], Cheng [5], Herriot [7], [8] Berkovitz [1], Shapiro [9], and others. Bochner [2] proved localization properties for multiple Fourier series where the summability method is Toeplitz summation of "spherical" partial sums. Cheng [5] used $(C, 1)$ summation of spherical partial sums to obtain a uniqueness theorem for multiple trigonometric series. Under a generalized Abel summation of multiple trigonometric series, Shapiro [12] obtained a representation of the coefficients in terms of the Lebesque integral, and under convergence and (C, 1) summability of circular partial sums of double trigonometric series he [10], [11] obtained standard type uniqueness theorems. Herriot [7], [8] considered localization properties of multiple Fourier series when the summation method is Nörlund summation of rectangular and "triangular" partial sums. He has shown, for example, that a regular Nörlund summation of triangular partial sums has the, localization property for double Fourier series but not for series of higher dimension. Shapiro [9] and Berkovitz [1] have studied localization properties for double trigonometric series, not known to be Fourier series; Shapiro's result is stated in terms of square summation, Berkovitz's in terms of circular summation, of the series.

In this paper properties of a multiple trigonometric series of a special type are investigated: it is shown that for convergence of the triangular partial sums, reasonable uniqueness and localization theorems hold; and Theorem 4.3 gives a uniqueness result in a form which is perhaps unexpected, although in one dimension it reduces to the standard result that a trigonometrical series converging everywhere to 0 vanishes identically. The same methods will yield proofs of Theorems 4.2 and 4.3 with triangular convergence replaced by triangular summability (C, $k$ ). Under these conditions the inner integral in (4.8) becomes a $C_{k+1} P$ - integral.

## 2. Definitions. Let

$$
\begin{equation*}
\sum_{0}^{\infty} \cdots \sum_{0}^{\infty} a_{m} \cos m x+b_{m} \sin m x \tag{2.1}
\end{equation*}
$$

be a trigonometric series in $n$ variables where $m=m_{1} m_{2} \cdots m_{n}$, $m x=$ $m_{1} x_{1}+m_{2} x_{2}+\cdots+m_{n} x_{n}$ and $a_{m}, b_{m}$ are real for all $m$. (This series is a special case of series (1.1) [5] where $f_{m n}=a_{m n}, d_{m n}=b_{m n}$.) The series

Received August 14, 1961. Some of the results in this paper were obtained while the author was a fellow of the Summer Research Institute of the Canadian Mathematical Congress, 1961.

