IMPLICATIONS OF POINTWISE BOUNDS ON POLYNOMIALS

By R. M. Dudley and Burton Randol

In this paper we prove several theorems which originated with the problem of determining upper bounds for the absolute values of a sequence of polynomials in an interval, given that the sequence converges on a subset of the interval having positive measure. As it turns out, the solution to this problem appears as a consequence of a considerably more general result.

Lemma 1. Let $I=[a, b]$ be a compact interval in the real line, and let P be a polynomial of degree n with complex coefficients, not all zero. Suppose A is a closed subset of I with $m(A)=k(b-a)$, where m denotes Lebesgue measure and $0<k \leq 1$. Define

$$
R_{A}(P)=\frac{\max _{x \varepsilon I}|P(x)|}{\max _{x \varepsilon A}|P(x)|}
$$

Then

$$
\begin{aligned}
R_{A}(P) \leq & R_{k}(n) \\
& =\frac{1}{2}\left[\left(2 k^{-1}-1+2 k^{-1} \sqrt{(1-k)}\right)^{n}+\left(2 k^{-1}-1-2 k^{-1} \sqrt{(1-k)}\right)^{n}\right]
\end{aligned}
$$

If A is a subinterval of I with a common endpoint, this bound is the best possible.
Proof. We can clearly assume $n>0$, and that P has lead coefficient 1. Now let x_{0} be a point in I. To prove the lemma, it suffices to show that in general,

$$
\frac{\left|P\left(x_{0}\right)\right|}{\max _{x \in A}|P(x)|} \leq R_{k}(n)
$$

and in doing this, we may first of all assume that $x_{0}=b$; for in any event, either $m\left(A \cap\left[a, x_{0}\right]\right) \geq k\left(x_{0}-a\right)$ or $m\left(A \cap\left[x_{0}, b\right]\right) \geq k\left(b-x_{0}\right)$, and in the first case, we simply consider the interval $\left[a, x_{0}\right]$, while in the second, we substitute $(-1)^{a} P(a+b-x)$ for $P(x)$ and consider the interval $\left[a, a+b-x_{0}\right]$.

We may further assume that all the roots of P lie in $[a, b]$, for if not, let a_{1}, \cdots, a_{n} be the roots of P (with proper multiplicities), and let c_{1}, \cdots, c_{n} be real numbers such that $c_{i} \leq b$, and $\left|b-a_{i}\right|=b-c_{i}(i=1, \cdots, n)$. Let $Q(x)=\prod_{i=1}^{n}\left(x-c_{i}\right)$. Then $Q(b)=|P(b)|$, while $|Q(x)| \leq|P(x)|$ for $x \varepsilon[a, b]$. I.e., $R_{A}^{\prime}(P) \leq R_{A}^{\prime}(Q)$, where we define $R_{A}^{\prime}(S)$ to be $R_{A}(S)$ with the numerator of the latter replaced by $|S(b)|$. Now if any of the c_{i} are less than a, replace them by a in the expression for Q, and call the resulting polynomial Q^{*}.

Received August 10, 1961. The authors are National Science Foundation Fellows.

