THE HOMOLOGY OF DELETED PRODUCTS OF TREES

By C. W. Parry

1. Introduction. If X is a space and &k > 1, then the k-th deleted product
space, X*% , of X is the topological product X X X X .-+ X X of k copies of
X minus the set of all points of the form (z, z, - -+ , x), where z ¢ X. The objective
of this paper is to show that the groups H,,(4% , Z), where A is a tree (finite,
contractible, 1-dimensional polyhedron) and Z is the group of integers, do not
provide any new information over and above the classical numerical invariants
x; = number of vertices of order 7 in A. We show that two trees, A and B,
have the same number of vertices of the same order ¢, for each ¢ > 2, if and
only if H,(A* , Z) is isomorphic to H,(B*% , Z) for each m and k. Therefore
we have reduced the unsolved problem of topological classification of trees by
means of algebraic invariants to the problem of classification of trees which
have the same number of vertices of the same order by means of algebraic
invariants. The usefulness of the groups H,(4%* , Z) in distinguishing spaces
of the same homotopy type has been demonstrated by Hu ([1]) and the author
(I2)). Hu also showed that the Euler characteristic x(4%) does not provide
more information than the numbers z; . The methods used in computing
H,(A* , Z) in this paper are, in part, extensions of those methods used by Hu.

In Section 3, we show that, for each m and %k, H,.(4% , Z) is a free Abelian
group, and we compute the exact number of generators of each of these groups
in terms of the orders of the vertices of A. (The author ([2]) has previously
computed H, (4% , Z).)

In §4, we show that these groups distinguish trees which do not have the
same number of vertices of a given order.

If X and Y are spaces, we use the notation, X = Y, to mean that X is homeo-
morphic to Y. The number of combinations of & things taken ¢ at a time is
denoted by C(%, 7). The group H,(K, Z) is the direct sum of m — 1 groups
each isomorphic to Z, where m denotes the number of components of K.

2. Some preliminary theorems.

DerFiNiTION 2.1. If X is a topological space and & > 1, then the diagonal,
D%, of the topological product X X X X .- X X of k copies of X is the set
of all points of the form (z, z, -+ , x), where x & X.

Dermnirion 2.2. If X is a topological space and &k > 1, then the k-th deleted
product space, X*% , of X is the space X; X X, X -+ X X, — Dg, where each
X, = X, with the relative topology.
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