A NEW CONVOLUTION FORMULA AND SOME NEW ORTHOGONAL RELATIONS FOR INVERSION OF SERIES

By H. W. Gould

1. Introduction. One of the most well-known orthogonal series relations is

$$
\sum_{k=j}^{n}(-1)^{n-k}\binom{n}{k}\binom{k}{j}=\binom{0}{n-j}=\left\{\begin{array}{ll}
0, & j \neq n \tag{1.1}\\
1, & j=n
\end{array} .\right.
$$

This immediately yields the well-known inverse series relations

$$
\begin{equation*}
F(n)=\sum_{k=1}^{n}(-1)^{k-1}\binom{n}{k} f(k), \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
f(n)=\sum_{k=1}^{n}(-1)^{k-1}\binom{n}{k} F(k) . \tag{1.3}
\end{equation*}
$$

There are, of course, many such relations known. The purpose of this paper is to present some new relations which include many of the well-known relations as special cases.

We shall need two preliminary results. Firstly, if $P(x)$ is a polynomial in x of degree less than n, then

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} P(a+b k)=0, \quad n \geq 1 \tag{1.4}
\end{equation*}
$$

This is merely the familiar fact that the n-th difference of such a polynomial must be zero.

Secondly, we shall make use of a set of inverse series relations recently proved by the author [3]. These relations are as follows:

$$
\begin{equation*}
\binom{a+b n}{n} f(n)=\sum_{k=0}^{n}(-1)^{k} \frac{a+b k-k}{a+b n-k}\binom{a+b n-k}{n-k} F(k) \tag{1.5}
\end{equation*}
$$

where a and b are real numbers and

$$
\begin{equation*}
F(n)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}\binom{a+b k}{n} f(k), \quad f(0)=\mathbf{1} \tag{1.6}
\end{equation*}
$$

2. The new relations. We make the definitions

$$
\begin{equation*}
R_{n}=\sum_{k=0}^{n}(-1)^{k} A_{k}(a, b) A_{n-k}(a+b k-k, 0) \tag{2.1}
\end{equation*}
$$

Received August 7, 1961. Research supported by National Science Foundation Grant G-14095.

