COMMUTATORS OF MATRICES WITH COEFFICIENTS FROM THE FIELD OF TWO ELEMENTS

By R. C. Thompson

Let GL(n, K) denote the multiplicative group of all nonsingular $n \times n$ matrices with coefficients in a field K, and let SL(n, K) denote the subgroup of GL(n, K)consisting of the matrices in GL(n, K) with determinant unity. Let $GF(p^n)$ denote the finite field with p^n elements. In [1] the author determined when a matrix in SL(n, K) can be expressed as a commutator $XYX^{-1}Y^{-1}$ of matrices X, Y in SL(n, K) or in GL(n, K), for $K \neq GF(2)$ or GF(3). In this note we determine when a matrix $A \in SL(n, GF(2))$ can be expressed as a commutator $XYX^{-1}Y^{-1}$ of matrices X, Y in SL(n, GF(2)) = GL(n, GF(2)). Our result is the following theorem.

THEOREM. Let n > 2. Then every element of SL(n, GF(2)) is a commutator of SL(n, GF(2)).

The present paper will not use any of the results of [1]. Our principal tool is the similarity theory of matrices; see [2, Chapter 8].

We begin by introducing suitable notation. We denote the two elements of GF(2) by 0 and 1. All polynomials, matrices and equations appearing in this paper are assumed to have coefficients in GF(2). By I_n we denote the $n \times n$ identity matrix. If $g(x) = x^t + a_{t-1}x^{t-1} + a_{t-2}x^{t-2} + \cdots + a_0$ is a polynomial, C(g(x)) will denote the companion matrix of g(x); see [2; 148]. The Jordan canonical form of $C((x + 1)^s)$ is denoted by $J_s: J_1 = I_1$ and for e > 1, J_s is the matrix (23) of [2; 163] where, in (23), a = 1. By A + B we denote the direct sum of the two matrices A and B:

$$A \dotplus B = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}.$$

If n = 0 we interpret $A + I_n + B$ as A + B.

LEMMA 1. For n > 3, the matrix $M_n = J_2 + J_{n-2}$ is a commutator of SL(n, GF(2)).

Proof. We first dispose of the cases n = 3, 4, 5, 6. Let

	[1	0	0		[1	0	1
$U_3 =$	0	1	0	, V ₃ =	0	1	0
	0	1	1)		0	0	1

Received June 29, 1961. The author wishes to acknowledge his debt to Dr. O. Taussky-Todd for suggesting the problem considered here. He also wishes to thank the National Research Council of Canada for its financial support.