# MONOTONE (NONLINEAR) OPERATORS IN HILBERT SPACE 

By George J. Minty

1. Introduction. Let $\mathfrak{X}$ be a Hilbert space, with real or complex scalars, and with inner product $\langle x, y\rangle$. For $\mathfrak{D} \subset \mathfrak{X}$, we call a (not necessarily linear) operator $F: \mathfrak{D} \rightarrow \mathfrak{X}$ a monotone operator provided that, for any $x_{1}, x_{2} \varepsilon \mathfrak{D}$,

$$
\operatorname{Re}\left\langle x_{1}-x_{2}, F\left(x_{1}\right)-F\left(x_{2}\right)\right\rangle \geq 0 .
$$

We prove several properties of such operators, the most important of which are that the "integral equation of the second kind" $x+F(x)=u$, under a few additional hypotheses, always has a solution for $x$, and that the solution depends continuously on $u$.

It is the author's feeling that some problems of mathematical physics which involve monotone operators could be better reformulated in terms of the "graphs" of the operators-i.e., in terms of a subset of the product space $\mathfrak{X} \times \mathfrak{X}$. An exploratory reformulation of a "classical" problem was made in [5]. This paper will not, however, be concerned with applications.
2. Background. In $E^{n}$, let $S$ be a sphere (boundary + interior); we let $r(S)$ denote its radius (which may be zero), and let $\delta\left(S_{1}, S_{2}\right)$ denote the distance between the centers of $S_{1}$ and $S_{2}$. A theorem of Kirszbraun [3], later rediscovered by Valentine [8], [9] is as follows:

Kirszbraun's Theorem. In $E^{n}$, suppose spheres $S_{1}, \cdots, S_{m}$ and $S_{1}^{\prime}, \cdots, S_{m}^{\prime}$ are such that $\left(1^{\circ}\right) \bigcap_{i} S_{i} \neq \emptyset,\left(2^{\circ}\right)$ for $i=1, \cdots, m, r\left(S_{i}\right)=r\left(S_{i}^{\prime}\right)$, and $\left(3^{\circ}\right)$ for $i, j=1, \cdots, m, \delta\left(S_{i}, S_{i}\right) \geq \delta\left(S_{i}^{\prime}, S_{i}^{\prime}\right)$. Then $\bigcap_{i} S_{i}^{\prime} \neq \emptyset$.

An elementary proof has been outlined by Schoenberg [7], and Mickle[4] has given a brief treatment of the extension of this theorem to the case of infinitely many spheres in infinite-dimensional Hilbert space. Since this extension is essential for our development of monotone functions, we give proofs in greater detail.

Theorem 1. Let $\mathfrak{X}$ be a Hilbert space (with real or complex scalars), and let $A$ be an index-set. Let $S_{\alpha}$ and $S_{\alpha}^{\prime}$ be spheres, indexed by $A$, satisfying $\left(1^{\circ}\right) \bigcap_{\alpha} S_{\alpha} \neq \emptyset,\left(2^{\circ}\right)$ for all $\alpha \varepsilon A, r\left(S_{\alpha}\right)=r\left(S_{\alpha}^{\prime}\right)$, and $\left(3^{\circ}\right)$ for all $\alpha, \beta \varepsilon A$, $\delta\left(S_{\alpha}, S_{\beta}\right) \geq \delta\left(S_{\alpha}^{\prime}, S_{\beta}^{\prime}\right)$. Then $\bigcap_{\alpha} S_{\alpha}^{\prime} \neq \emptyset$.

Proof. Assume ( $1^{\circ}$ ), $\left(2^{\circ}\right)$, and $\left(3^{\circ}\right)$, and distinguish an element $\gamma \varepsilon A$. It is sufficient to prove that $\bigcap_{\alpha}\left(S_{\gamma}^{\prime} \cap S_{\alpha}^{\prime}\right)$ is nonempty. But the ( $S_{\gamma}^{\prime} \cap S_{\alpha}^{\prime}$ ) are weakly-closed subsets of the weakly-compact ball $S_{\gamma}^{\prime}$, so by the "finite intersection property", it suffices to show that the intersection of each finite sub-

Received Dece mber 30, 1960.

