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1. Let F denote the finite field GF(q) of order q. It is familiar that every
function ](x) over F with values in F can be represented by a polynomial with
coefficients in F. Indeed by the Lagrange interpolation formula we have

(l) ](x) x a ](a).

The values ](a) are arbitrary elements of F. In particular if the ](a) are distinct,
then ](x) is a permutation polynomial.

For many purposes it is convenient to adioin a symbol to F. We assume
that 1/0, 0 1/, -t-a (a, F), a. (a 0). For brevity
we let F* denote the enlarged system. A function (x) over F* will have the
obvious meaning, namely l(a) F* for all a, F*. In particular if the quantities
l(a) are distinct for all a, F*, then ](x) is called a permutation ]unction over F*.

Suppose now that l(x) is a permutation function over F*. If, in the first place,
]() then the numbers ](a), where a, F, are a permutation of the numbers
of F. Thus we may identify ](x) with the permutation polynomial ](x) defined by

Because of the hypothesis concerning ](x) it is clear that deg ](x) >_ 1, so that

In the next place suppose that ](0o) # . Let ](k) oo, where k, F, and put

(2) g(x) f( + x 1_ k) ( a).

Then clearly g() ](k) . Moreover for x, F, x # k, the numbers

1

are distinct and different from k; thus the numbers

1(3)

run through the numbers of F. By the present hypothesis it follows that the
numbers

((4)
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