A NOTE ON PERMUTATION FUNCTIONS OVER A FINITE FIELD

By L. CARLITZ

1. Let F denote the finite field GF(q) of order q. It is familiar that every function f(x) over F with values in F can be represented by a polynomial with coefficients in F. Indeed by the Lagrange interpolation formula we have

(1)
$$f(x) = -\sum_{a \in F} \frac{x^a - x}{x - a} f(a).$$

The values f(a) are arbitrary elements of F. In particular if the f(a) are distinct, then f(x) is a permutation polynomial.

For many purposes it is convenient to adjoin a symbol ∞ to F. We assume that $\infty = 1/0$, $0 = 1/\infty$, $\infty + a = \infty$ $(a \in F)$, $a \cdot \infty = \infty$ $(a \neq 0)$. For brevity we let F^* denote the enlarged system. A function f(x) over F^* will have the obvious meaning, namely $f(a) \in F^*$ for all a $\in F^*$. In particular if the quantities f(a) are distinct for all $a \in F^*$, then f(x) is called a *permutation function* over F^* .

Suppose now that f(x) is a permutation function over F^* . If, in the first place, $f(\infty) = \infty$ then the numbers f(a), where $a \in F$, are a permutation of the numbers of F. Thus we may identify f(x) with the permutation polynomial $\overline{f}(x)$ defined by

$$\bar{f}(x) = -\sum_{a \in F} \frac{x^a - x}{x - a} f(a).$$

Because of the hypothesis concerning f(x) it is clear that deg $\overline{f}(x) \ge 1$, so that $\overline{f}(\infty) = \infty$.

In the next place suppose that $f(\infty) \neq \infty$. Let $f(k) = \infty$, where $k \in F$, and put

(2)
$$g(x) = f\left(k + \frac{1}{x-k}\right) \quad (x \neq a).$$

Then clearly $g(\infty) = f(k) = \infty$. Moreover for $x \in F, x \neq k$, the numbers

$$k + \frac{1}{x-k}$$

are distinct and different from k; thus the numbers

(3)
$$k, k + \frac{1}{x-k} \quad (x \in F, x \neq k)$$

run through the numbers of F. By the present hypothesis it follows that the numbers

(4)
$$f(\infty), \quad f\left(k+\frac{1}{x-k}\right)$$

Received June 21, 1961. Supported in part by National Science Foundation grant G16485.