A NOTE ON PERMUTATION FUNCTIONS OVER A FINITE FIELD

By L. Carlitz

1. Let F denote the finite field $G F(q)$ of order q. It is familiar that every function $f(x)$ over F with values in F can be represented by a polynomial with coefficients in F. Indeed by the Lagrange interpolation formula we have

$$
\begin{equation*}
f(x)=-\sum_{a \varepsilon F} \frac{x^{a}-x}{x-a} f(a) . \tag{1}
\end{equation*}
$$

The values $f(a)$ are arbitrary elements of F. In particular if the $f(a)$ are distinct, then $f(x)$ is a permutation polynomial.

For many purposes it is convenient to adjoin a symbol ∞ to F. We assume that $\infty=1 / 0,0=1 / \infty, \infty+a=\infty(a \varepsilon F), a \cdot \infty=\infty(a \neq 0)$. For brevity we let F^{*} denote the enlarged system. A function $f(x)$ over F^{*} will have the obvious meaning, namely $f(a) \varepsilon F^{*}$ for all a εF^{*}. In particular if the quantities $f(a)$ are distinct for all $a \varepsilon F^{*}$, then $f(x)$ is called a permutation function over F^{*}.
Suppose now that $f(x)$ is a permutation function over F^{*}. If, in the first place, $f(\infty)=\infty$ then the numbers $f(a)$, where $a \varepsilon F$, are a permutation of the numbers of F. Thus we may identify $f(x)$ with the permutation polynomial $\bar{f}(x)$ defined by

$$
\bar{f}(x)=-\sum_{a \in F} \frac{x^{a}-x}{x-a} f(a) .
$$

Because of the hypothesis concerning $f(x)$ it is clear that $\operatorname{deg} \bar{f}(x) \geq 1$, so that $\bar{f}(\infty)=\infty$.

In the next place suppose that $f(\infty) \neq \infty$. Let $f(k)=\infty$, where $k \varepsilon F$, and put

$$
\begin{equation*}
g(x)=f\left(k+\frac{1}{x-k}\right) \quad(x \neq a) \tag{2}
\end{equation*}
$$

Then clearly $g(\infty)=f(k)=\infty$. Moreover for $x \boldsymbol{\varepsilon} F, x \neq k$, the numbers

$$
k+\frac{1}{x-k}
$$

are distinct and different from k; thus the numbers

$$
\begin{equation*}
k, k+\frac{1}{x-k} \quad(x \varepsilon F, x \neq k) \tag{3}
\end{equation*}
$$

run through the numbers of F. By the present hypothesis it follows that the numbers

$$
\begin{equation*}
f(\infty), \quad f\left(k+\frac{1}{x-k}\right) \tag{4}
\end{equation*}
$$

Received June 21, 1961. Supported in part by National Science Foundation grant G16485.

