HOMOTOPY GROUPS OF CONFIGURATION SPACES AND THE STRING PROBLEM OF DIRAC

By E. FADELL

1. Introduction. 1.1. We recall first the definition of configuration space as given in [3]. Let X denote a topological space and Q_m a fixed set of m distinct points of X. The configuration space $F_{m,n}(X)$ is the space of n-tuples (p_1, \dots, p_n) of mutually distinct points of X with the further condition that no p_i belongs to Q_m , $i = 1, \dots, n$. Homotopy groups of configuration spaces of various spaces play a useful role in many connections, and the first useful result is due to L. Neuwirth [3], namely,

$$\pi_i(F_{0,n}(E^r)) = \sum_{k=1}^{n-1} \pi_i(\underbrace{S^{r-1} \vee \cdots \vee S^{r-1}}_{k}), \quad i \geq 2.$$

There are also contained in [3] general results which give $\pi_i(F_{0,n}(X))$ for odd dimensional spheres and for compact 2-manifolds different from the 2-sphere and projective plane. For example, if S' is an odd sphere

$$\pi_i(F_{0,n}(S^r)) = \pi_i(S^r) + \sum_{k=1}^{n-2} \pi_i(\underbrace{S^{r-1} \vee \cdots \vee S^{r-1}}_k), \quad i \geq 2.$$

The case of even spheres is conspicuously absent from [3], as is the case of projective spaces. In this note we remedy this situation by proving the following theorems, where we assume throughout that $r \geq 2$ since the case r = 1 is of little interest.

THEOREM 1. If S' is an r-sphere, then for $n \geq 4$

$$\pi_{i}(F_{0,n}(S^{r})) = \pi_{i}(V_{r+1,2}) + \sum_{k=2}^{n-2} \pi_{i}(\underbrace{S^{r-1} \vee \cdots \vee S^{r-1}}_{k}), \quad i \geq 2.$$

where $V_{r+1,2}$ is the Stiefel manifold [6] of orthogonal two frames in Euclidean (r+1)-space. For n=2,3

$$\pi_i(F_{0,2}(S^r)) = \pi_i(S^r), \quad i \ge 1.$$

$$\pi_i(F_{0,3}(S^r)) = \pi_i(V_{r+1,2}), \quad i \ge 1.$$

THEOREM 2. If P^r is real projective r-space, then for $n \geq 3$

$$\pi_i(F_{0,n}(P^r)) = \pi_i(V_{r+1,2}) + \sum_{k=1}^{n-2} \pi_i(\underbrace{S^{r-1} \vee \cdots \vee S^{r-1}}_{2k+1}), \quad i \geq 2.$$

Received June 19, 1961. Supported in part by the National Science Foundation under Grant NSF G-11297.