THE EQUATION $t a t=b$ IN A COMPOSITION ALGEBRA

By Barth Pollak

Introduction. In a previous paper [3], I studied the solution of the equation $t a t=b$ with $N t$ preassigned over a quaternion algebra. It turns out that the results are valid over any composition algebra so that the associativity of the quaternion multiplication is a luxury that may be eliminated.

1. The composition algebra C. In this section we follow Jacobson [1] which the reader should consult for details.

Let k be a field of characteristic $\neq 2$. By a composition algebra we mean a pair (C, N) consisting of a (non-associative) algebra C over k and a quadratic form N on C to k satisfying $N(x y)=N(x) N(y)$ for all $x, y \varepsilon C$. One also makes two additional assumptions: (i) C has an identity element 1 and (ii) the bilinear form $\frac{1}{2}[N(x+y)-N(x)-N(y)]$ is non-degenerate. One then shows that any composition algebra is an alternative algebra with involution $x \rightarrow \bar{x}$ such that $x \bar{x}=N(x) 1$ and $x+\bar{x}=S(x) 1$ with $N(x)$ and $S(x)$ in $k . \quad N(x)$ and $S(x)$ are called respectively the norm and trace of x, and one has $x^{2}-S(x) x+N(x) 1=0$.

It is an important result (originally investigated by Hurwitz) that $\operatorname{dim} C=1$, 2,4 or 8 . In dim 2 we have a (commutative) quadratic algebra, in $\operatorname{dim} 4$ a (generalized) quaternion algebra and in $\operatorname{dim} 8$ a (generalized) Cayley-Dickson algebra. For the problem discussed in this paper dim 2 is trivial and dim 4 has already been studied in [3] so that our attention will be focused on dim 8 . In most cases we will be able to cut down to a quaternion subalgebra and use the results of [3]. However this will not always be possible and thus in $\S \S 5$ and 6 a more delicate analysis is necessary.
2. Statement of the problem. Let $a, b \varepsilon C$. Let $\sigma \varepsilon k^{*}$ (the multiplicative group of non-zero elements of k). We ask: does there exist $t \varepsilon C$ such that tat $=b$ with $N t=\sigma$? If such a t exists, we must have $N b=\sigma^{2} N a$ and $S b=\sigma S a$. Writing $a=S a / 2+a_{1}$ and $b=S b / 2+b_{1}$ we see that tat $=b$ with $N t=\sigma$ if and only if $t a_{1} t=b_{1}$ with $N t=\sigma$. Hence no generality is lost in assuming $S a=S b=0$, that is, that a and b are pure. Thus we state our problem in the following form:
Suppose $a, b \varepsilon C$ and are pure. Suppose $\sigma \varepsilon k^{*}$. Finally, let $N b=\sigma^{2} N a$. Give necessary and sufficient conditions for the existence of t in C with

$$
\begin{equation*}
\text { tat }=b \quad \text { and } \quad N t=\sigma . \tag{H}
\end{equation*}
$$

In the remainder of this paper, a and b will denote pure, non-zero elements of C such that $N b=\sigma^{2} N a$ for some $\sigma \varepsilon k^{*}$. Finally we will assume in the rest of this paper with the exception of $\S 7$ that $\operatorname{dim} C=8$.

Received February 27, 1961; in revised form, January 15, 1962.

