A CONGRUENCE PROPERTY OF THE DIVISORS OF n FOR EVERY n

By C. L. Vanden Eynden

If n is any positive integer, n has at least as many positive divisors congruent to 1 as congruent to $3(\bmod 4)$. The purpose of this paper is to characterize those triples of integers a, b and k that can be substituted for 1,3 and 4 in the preceding sentence. More precisely, denote by $N(n, j, k)$ the number of positive divisors d of n such that $d \equiv j(\bmod k)$. From now on we assume $k>1, a \neq b$, and, for definiteness, $1 \leq a, b \leq k$. Let S be the set of triples $\langle a, b, k\rangle$ such that $N(n, a, k) \geq N(n, b, k)$ for all positive integers n. All congruences will be modulo k unless otherwise specified.

Lemma 1. Let $\langle a, b, k\rangle \in S$ and $(a, b, k)=1$. Then $(b, k)=a=1$.
Proof. First we show $a=1$. Taking $n=b$ shows $a \mid b$. Since if $n=k+b$, then $(a+k) \nmid n$, we must have $a \mid(k+b)$ and so $a \mid k$. Thus $a \mid(a, b, k)$.

Now let $(b, k)=h$ and set $n=b+k b / h$. Since both $b, n \equiv b$, there must exist another divisor of n congruent to 1 besides 1 itself. Suppose $t(r k+1)=$ $n=b(k / h+1), r, t \geq 1$. Clearly $t<b$ unless $h=1$. But $t \equiv b$, therefore $t=b$. Thus $h=(b, k)=1$.

Lemma 2. Let $\langle a, b, k\rangle \boldsymbol{\varepsilon} S$ and $(a, b, k)=1$. Then $c^{2} \equiv 1(\bmod k)$ whenever $(c, k)=1$.

Proof. First we show $b^{2} \equiv 1$. Since $a=(b, k)=1$ by Lemma 1 , we can use Dirichlet's theorem to pick distinct primes $p_{1}, p_{2} \equiv b$. Let $n=p_{1} p_{2}$. The divisors of n are $1, p_{1}, p_{2}, p_{1} p_{2}$. Thus $N(n, b, k) \geq 2$ so we must have $p_{1} p_{2} \equiv 1$. Thus $b^{2} \equiv 1$.

Now let $(c, k)=1$. We want to show $c^{2} \equiv 1$ and so can assume $c \not \equiv 1$ and $c \not \equiv b$. Choose x such that $c x \equiv b$ and pick primes $p_{1}, p_{2} \equiv c$ and $p \equiv x$. Let $n=p p_{1} p_{2}$. Its divisors are $1, p, p_{1}, p_{2}, p p_{1}, p p_{2}, p_{1} p_{2}, p p_{1} p_{2}$. Since $p p_{1} \equiv$ $p p_{2} \equiv b, n$ must have at least one divisor $d \equiv 1$ besides 1 itself. If $p \equiv 1$ or $p p_{\mathrm{i}} p_{2} \equiv 1$, then $c \equiv b$, contrary to assumption. Also $p_{1} \equiv p_{2} \equiv c \not \equiv 1$. Only one divisor remains, $p_{1} p_{2}$. Thus $p_{1} p_{2} \equiv c^{2} \equiv 1$.

Lemma 3. A natural number k has the property that $c^{2} \equiv 1(\bmod k)$ whenever $(c, k)=1$ if and only if $k \mid 24$.

Proof. The proof that k has the required property whenever $k \mid 24$ is easy and will be omitted. To see the converse, suppose $k \not \backslash 24$. Then there exists a divisor m of k such that $(m, k / m)=1$ and m is either a power of a prime $p \geq 5$,

Received May 22, 1961. The author is a National Science Foundation Fellow. He wishes to thank Professor Ivan Niven for suggesting both the problem and an improvement which shortened the proof.

