MAHLER MATRICES AND THE EQUATION $Q A=A Q^{m}$

By J. L. Brenner

1. Introduction. In this article several sets of matrices are defined; each set forms an Abelian group. The elements of the matrices are $0,1,-1$ and other roots of unity (or sums of roots of unity). The determinant, characteristic roots, vectors, and elementary divisors are also found.

Thus the matrices form a convenient set of test matrices for a routine which purports to solve a matrix. A typical test matrix may involve nonreal elements; if each element of the matrix is replaced by a 2×2 matrix in the usual way:

$$
a+b i \sim\left[\begin{array}{rr}
a, & b \\
-b, & a
\end{array}\right],
$$

the roots of the expanded real matrix are the roots of the test matrix and their conjugates. The vectors of the expanded matrix are easily found also.

Indeed if $z=\left[z_{1}, z_{2}, \cdots, z_{n}\right]^{\prime}$ is a (column) vector of the matrix $A: A z=z \lambda$, $z_{n}=x_{n}+i y_{n}$, the vector of the real expanded matrix which corresponds to the root λ is $\left[x_{1}+i y_{1}, i x_{1}-y_{1}, \cdots, x_{n}+i y_{n}, i x_{n}-y_{n}\right]^{\prime}$. If λ is real, the vectors $\left[x_{1},-y_{1}, \cdots, x_{n},-y_{n}\right]^{\prime},\left[y_{1}, x_{1}, \cdots, y_{n}, x_{n}\right]^{\prime}$ of the expanded matrix also correspond to λ [3].

In view of the group property and a certain isomorphism of the group, the product of several matrices from a set is easily written down at sight. This gives a convenient test of the corresponding computation routine.

A set of matrices was defined by K. Mahler [6] which also forms an Abelian group. His set is a special one of the sets defined here. The roots and determinants of Mahler's special matrices were given by Lehmer [5]. I am indebted to Lehmer for calling my attention to his and Mahler's work. The results of Lehmer and Mahler inspired this paper.
2. The matrices form an Abelian group. Let l, n be positive integers, $(l, n)=1, l>1, n>1$. (The case $l=1$ is taken up in §8.) Set $s=\exp [2 \pi i / l]$, and let m be a positive integer, $(m, n)=1, m \equiv 1(\bmod l)$, i.e., $l \mid m-1$.

Definition 1. Let Q be the matrix

$$
\left[\begin{array}{l}
0,1 \\
0,0,1 \\
\cdot . \\
0,0, \cdots, 0,1 \\
s, 0, \cdots, 0,0
\end{array}\right] .
$$

Received November 28, 1960; in revised form, June 6, 1961. Sponsored in part by the Mathematics Research Center, U. S. Army, Madison, Wisconsin, under Contract No. DA-11-022-ORD-2059.

