ERRATA

H. W. Gould, A series transformation for finding convolution identities, vol. 28 (1961), p. 200. The last line should read

$$C_k(a, b) = \frac{a}{a + bk} G_k(a, b).$$

David Dean and Ralph A. Raimi, Permutations with comparable sets of invariant means, vol. 27 (1960). In Theorems 3.3 and 4.2 it is necessary to add the hypothesis that $F_{\sigma} = F_{\mu}$, where F_{σ} is the collection of finite cycles in σ , as in the definition preceding Lemma 4.3. This error does not affect what follows Theorem 4.2 and is irrelevant to what precedes Theorem 3.3.

Page 468, line 6: The displayed formula should read

$$l_{p_{\alpha}}x_{\alpha} = \bigcap_{\alpha \circ \epsilon A} (\overline{\bigcup_{\alpha > \alpha \circ} \{x_{\alpha}\}}).$$

Page 468, line 19: The displayed formula should read

$$M'_{\sigma} = \{ \bigcup [l_{p_{\alpha}} S'_{\alpha} p'_{\alpha}] \}^{\wedge}.$$

Jack Levine, Coefficient identities derived from expansions of elementary symmetric function products in terms of power sums, vol. 28(1961).

In (2.2) read $\frac{\partial}{\partial s_m}$ instead of $\frac{\partial}{\partial_{s_m}}$.

In first line under (2.10) read $1^{n_{ij}}$ instead of $1^{n_{ij}}$.

Page 95, in (6) read "entries" instead of "entires".

In (3.1), (3.5), (3.9), (4.9) read \sum_{m} instead of \sum_{m} .

In (3.10) read $\sum_{m=1}$ instead of $\sum_{m=1}$.

In (6.5) read \sum_{m} on left and $\sum_{m'a}^{m-1}$ on right. Page 102, line 8 from bottom, read \sum_{3} , \sum_{4} , \sum_{5} , instead of \sum_{3} , \sum_{4} , \sum_{5} .

Eckford Cohen, Representations of even functions (mod r), III. Special topics, vol. 26(1959), pp. 491-500. Remark. In §4 of this paper the function $G_{\mathfrak{s}}(n, r)$ was defined to be the number of solutions of $n \equiv p_1 x_1 + \cdots p_s x_s \pmod{r}$ such that $(x_i, r) = 1, p_i \mid r, p_i$ prime $(i = 1, \dots, s)$. In §1 this function was interpreted to be the number of representations of n as a sum of s primes π_i in the residue class ring J_r of the integers (mod r). Actually, $G_s(n, r)$ represents the number of weighted compositions of n in J_r as a sum of s primes π_i with each π_i counted p_i or $p_i - 1$ times (p_i being the prime divisor associate d with π_i), according as p_i does or does not divide r to a power higher than the first.

M. Lees and M. H. Protter, Unique continuation for parabolic differential equations and inequalities, vol. 28(1961), page 369, line 2, $L=A-\frac{\partial}{\partial t}$ instead of $L = A = \frac{\partial}{\partial t}$.