ERRATA

H. W. Gould, A series transformation for finding convolution identities, vol. 28 (1961), p. 200. The last line should read

$$
C_{k}(a, b)=\frac{a}{a+b k} G_{k}(a, b)
$$

David Dean and Ralph A. Raimi, Permutations with comparable sets of invariant means, vol. 27 (1960). In Theorems 3.3 and 4.2 it is necessary to add the hypothesis that $F_{\sigma}=F_{\mu}$, where F_{σ} is the collection of finite cycles in σ, as in the definition preceding Lemma 4.3. This error does not affect what follows Theorem 4.2 and is irrelevant to what precedes Theorem 3.3.

Page 468, line 6: The displayed formula should read

$$
l_{p \alpha} x_{\alpha}=\bigcap_{\alpha_{0} \varepsilon A}\left(\overline{\bigcup_{\alpha>\alpha_{0}}\left\{x_{\alpha}\right\}}\right) .
$$

Page 468, line 19: The displayed formula should read

$$
M_{\sigma}^{\prime}=\left\{\bigcup\left[l_{\nu_{\alpha}} S_{\alpha}^{\prime} p_{\alpha}^{\prime}\right]\right\}^{\wedge}
$$

Jack Levine, Coefficient identities derived from expansions of elementary symmetric function products in terms of power sums, vol. 28(1961).

In (2.2) read $\frac{\partial}{\partial s_{m}}$ instead of $\frac{\partial}{\partial_{s m}}$.
In first line under (2.10) read $1^{n_{1 i}}$ instead of $1^{n_{i j}}$.
Page 95, in (6) read "entries" instead of "entires".
In (3.1), (3.5), (3.9), (4.9) read \sum_{m} instead of \sum_{m}.
In (3.10) read \sum_{m-1} instead of \sum_{m-1}.
In (6.5) read \sum_{m} on left and $\sum_{m^{\prime} \alpha}^{m-1}$ on right.
Page 102, line 8 from bottom, read $\sum_{3}, \sum_{4}, \sum_{5}$, instead of $\sum_{3}, \sum_{4}, \sum_{5}$.
Eckford Cohen, Representations of even functions $(\bmod r)$, III. Special topics, vol. 26(1959), pp. 491-500. Remark. In $\S 4$ of this paper the function $G_{s}(n, r)$ was defined to be the number of solutions of $n \equiv p_{1} x_{1}+\cdots p_{s} x_{s}(\bmod r)$ such that $\left(x_{i}, r\right)=1, p_{i} \mid r, p_{i}$ prime $(i=1, \cdots, s)$. In $\S 1$ this function was interpreted to be the number of representations of n as a sum of s primes π_{i} in the residue class ring J_{r} of the integers $(\bmod r)$. Actually, $G_{s}(n, r)$ represents the number of weighted compositions of n in J_{r} as a sum of s primes π_{i} with each π_{i} counted p_{i} or $p_{i}-1$ times (p_{i} being the prime divisor associate d with π_{i}), according as p_{i} does or does not divide r to a power higher than the first.
M. Lees and M. H. Protter, Unique continuation for parabolic differential equations and inequalities, vol. 28(1961), page 369, line 2, $L=A-\frac{\partial}{\partial t}$ instead of $L=A=\frac{\partial}{\partial t}$.

