A BILINEAR GENERATING FUNCTION
FOR THE HERMITE POLYNOMIALS

By L. CArLITZ

1. The bilinear generating function of Mehler [2; 194]
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is well known. In the present note we examine the sum
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Making use of (2), it is evident that
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For r > s the inner sum on the extreme right is equal to
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in the usual notation for Bessel functions of purely imaginary argument.
For r < s we find similarly that the inner sum is equal to
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Thus (4) becomes
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