A BILINEAR GENERATING FUNCTION FOR THE HERMITE POLYNOMIALS

By L. Carlitz

1. The bilinear generating function of Mehler [2; 194]

$$
\begin{equation*}
\sum_{n=0}^{\infty} H_{n}(x) H_{n}(y) \frac{t^{n}}{2^{n} n!}=\left(1-t^{2}\right)^{-\frac{1}{2}} \exp \frac{2 x y t-\left(x^{2}+y^{2}\right) t^{2}}{1-t^{2}} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{n}(x)=\sum_{2 r \leq n}(-1)^{r} \frac{n!(2 x)^{n-2 r}}{r!(n-2 r)!}, \tag{2}
\end{equation*}
$$

is well known. In the present note we examine the sum

$$
\begin{equation*}
\Phi(t)=\sum_{n=0}^{\infty} H_{n}(x) H_{n}(y) \frac{t^{n}}{(n!)^{2}} . \tag{3}
\end{equation*}
$$

Making use of (2), it is evident that

$$
\begin{align*}
\Phi(t)=\sum_{n=0}^{\infty} t^{n} \sum_{2 r \leq n}(-1)^{r} & \frac{(2 x)^{n-2 r}}{r!(n-2 r)!} \sum_{2 s \leq n}(-1)^{s} \frac{(2 y)^{n-2 s}}{s!(n-2 s)!} \tag{4}\\
& =\sum_{r, s=0}^{\infty} \frac{(-1)^{r+s}}{r!s!} \sum_{n \geq \max (2 r, 2 s)} \frac{(2 x)^{n-2 r}(2 y)^{n-2 s} t^{n}}{(n-2 r)!(n-2 s)!} .
\end{align*}
$$

For $r \geq s$ the inner sum on the extreme right is equal to

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{(2 x)^{n}(2 y)^{n+2 r-2 s} t^{n+2 r}}{n!(n+2 r-2 s)!} \\
& \quad=\left(\frac{y}{x}\right)^{r-s} t^{r+e} \sum_{n=0}^{\infty} \frac{(2 x)^{n+r-s}(2 y)^{n+r-s} t^{n+r-s}}{n!(n+2 r-2 s)!}=\left(\frac{y}{x}\right)^{r-s} t^{r+s} I_{2 r-2 s}(4 \sqrt{x y t}),
\end{aligned}
$$

in the usual notation for Bessel functions of purely imaginary argument.
For $r \leq s$ we find similarly that the inner sum is equal to

$$
\left(\frac{x}{y}\right)^{s-r} t^{s+r} I_{2 s-2 r}(4 \sqrt{x y t}) .
$$

Thus (4) becomes
$\Phi(t)=\sum_{r \geq s} \frac{(-1)^{r+s}}{r!s!}\left(\frac{y}{x}\right)^{r-s} t^{r+s} I_{2 r-2 s}(4 \sqrt{x y t})$
Received March 24, 1961. Supported in part by National Science Foundation grant G 9425 .

