SOME GENERATING FUNCTIONS OF WEISNER

By L. Carlitz

1. Weisner [7] has obtained the following expansions:

$$
\begin{align*}
(1-w)^{\alpha+\beta-\gamma}(1+(x-1) w)^{-\alpha}(1 & +(y-1) w)^{-\beta} F(\alpha, \beta ; \gamma ; \zeta) \tag{1}\\
= & \sum_{n=0}^{\infty} \frac{(\gamma)_{n} w^{n}}{n!} F(-n, \alpha ; \gamma ; x) F(-n, \beta ; \gamma ; y)
\end{align*}
$$

where

$$
\begin{equation*}
\zeta=\frac{x y w}{(1+(x-1) w)(1+(y-1) w)} \tag{2}
\end{equation*}
$$

and

$$
\begin{align*}
(1-w)^{\alpha-\gamma-1}(1+(x-1) w)^{-\alpha} & \exp \left(\frac{-y w}{1-w}\right) \tag{3}\\
& \cdot{ }_{1} F_{1}\left(\alpha ; \gamma-1 ; \frac{x y w}{(1-w)(1+(x-1) w)}\right) \\
= & \sum_{n=0}^{\infty} w^{n} F(-n, \alpha ; \gamma-1 ; x) L_{n}^{(\gamma)}(y),
\end{align*}
$$

where $L_{n}^{(\gamma)}(x)$ is the Laguerre polynomial,

$$
\begin{equation*}
L_{n}^{(\gamma)}(x)=\frac{(\gamma-1)_{n}}{n!}{ }_{1} F_{1}(-n ; \gamma+1 ; x) . \tag{4}
\end{equation*}
$$

For another proof of (3) see Rainville [5; 213]; see also Brafman [2].
It may be of interest to point out that (1) can be proved in a straightforward way as follows. Since

$$
(1+(x-1) w)^{-\alpha}=((1-w)+x w)^{-\alpha}=(1-w)^{-\alpha}\left(1+\frac{x w}{1-w}\right)^{-\alpha}
$$

we have by (1) and (2)

$$
\begin{align*}
&(1-w)^{\alpha+\beta-\gamma}(1+(x-1) w)^{-\alpha}(1+(y-1) w)^{-\beta} F(\alpha, \beta ; \gamma ; \zeta) \tag{5}\\
&=(1-w)^{\alpha+\beta-\gamma} \sum_{n=0}^{\infty} \frac{(\alpha)_{n}(\beta)_{n}}{n!(\gamma)_{n}} \frac{(x y w)^{n}}{(1+(x-1) w)^{n+\alpha}(1+(y-1) w)^{n+\beta}} \\
&=\sum_{n=0}^{\infty} \frac{(\alpha)_{n}(\beta)_{n}}{n!(\gamma)_{n}} \frac{(x y w)^{n}}{(1-w)^{\gamma+2 n}}
\end{align*}
$$

Received April 24, 1961. Supported in part by National Science Foundation grant G-9425.

