DENSITY TOPOLOGY AND APPROXIMATE CONTINUITY

BY CASPER GOFFMAN, C. J. NEUGEBAUER, T. NISHIURA

It was observed in [1] that the approximately continuous functions on Euclidean n space, E_n , are continuous if the space is given the appropriate topology. A set S is open in this topology, and is called *d*-open, if it is measurable and if the metric density of S exists and is equal to 1 at every point of S. The topology is called the *d*-topology.

In this paper, we ask whether or not the *d*-topology is the coarsest one for which the approximately continuous functions are continuous. This is the same as asking whether or not E_n , with the *d*-topology, is a completely regular space. For E_1 , the answer is yes, and is obtained as a consequence of the known fact (Lusin-Menchoff Theorem [5]) that if E is a Borel set, $X \subset E$ is closed, and E has metric density 1 at every $x \in X$, then there is a perfect set P such that $X \subset P \subset E$ and P has metric density 1 at every $x \in X$.

For n > 1, a distinction must be made between ordinary and strong metric density. For the case of ordinary metric density, an analogue of the Lusin-Menchoff Theorem holds and, indeed, the associated *d*-topology, now called the d_o -topology, is completely regular. Surprisingly, however, the Lusin-Menchoff Theorem fails to hold for strong metric density and, moreover, the corresponding *d*-topology, now called the d_o -topology, is not completely regular. A coarser topology for which the strongly approximately continuous functions are continuous has as open sets *S* those measurable sets for which the strong metric density of *S* is 1 and the linear metric densities of *S* are 1, in the directions of the coordinate axes, at every $x \in S$. It is not known whether or not E_n is completely regular with this topology.

1. Lusin-Menchoff Theorem. For $E \subset E_n$, $x \in E_n$, E measurable, we denote the upper and lower ordinary metric densities of E at x by $\bar{d}_o(x, E)$ and $\underline{d}_o(x, E)$, respectively. Replacing the subscript "o" by "s", we obtain the upper and lower strong metric densities of E at x. If $\bar{d}_o(x, E) = \underline{d}e(x, E)$, we denote the common value by $d_o(x, E)$, and call it the ordinary metric density of E at x. We adopt an analogous convention for strong metric densities (see [4; 106, 128] for the definitions). If there is no reason to distinguish, we use d(x, E) for the ordinary or strong metric density. In this paper, *interval* means *oriented interval*, |A| denotes the Lebesgue measure of A, and $\delta(A)$ stands for the diameter of A.

LEMMA 1. Let $B \subset E_n$ be a Borel set, and let $x \in B$ with d(x, B) = 1. There is a perfect set K with $x \in K$ and $K \subset B$.

Received February 17, 1961. The work of the first two named authors is supported by National Science Foundation Grant No. NSF 18920.