# A NOTE ON THE SINGULAR VALUES OF THE PRODUCT OF TWO MATRICES 

By Ali R. Amir-Moéz

In this note we answer one of the questions which has not been established in [1], that is, to estimate the real and imaginary singular values of the product of two matrices.

1. Definitions and notations. For an $n$-by- $n$ matrix $A$, with real or complex elements, the eigenvalues of $\left(A+A^{*}\right) / 2$ and $\left(A-A^{*}\right) / 2 i$ are respectively called the real and imaginary singular values of $A$. Here $A^{*}$ is the conjugate transpose of $A$. It is well known that $A^{*} A$ and $A A^{*}$ have the same eigenvalues and these eigenvalues are non-negative. The non-negative square roots of these eigenvalues are called absolute singular values of $A$.

If $j_{p} \leq i_{p}$ for $p=1, \cdots, k$, we write $\left(j_{1}, \cdots, j_{k}\right) \leq\left(i_{1}, \cdots, i_{k}\right)$. Given any sequence $i_{1} \leq \cdots \leq i_{k}$ of integers such that $i_{p} \geq p$ for all $p$, let ( $i_{1}^{\prime}, \cdots, i_{k}^{\prime}$ ) denote the strictly increasing sequence of positive integers such that
(a) $\quad\left(i_{1}^{\prime}, \cdots, i_{k}^{\prime}\right) \leq\left(i_{1}, \cdots, i_{k}\right)$
(b) $\quad\left(j_{1}, \cdots, j_{k}\right) \leq\left(i_{1}^{\prime}, \cdots, i_{k}^{\prime}\right)$ whenever $\left(j_{1}, \cdots, j_{k}\right)$
is a strictly increasing sequence of positive integers which is $\leq\left(i_{1}, \cdots, i_{k}\right)$. It is easily seen that ( $i_{1}^{\prime}, \cdots, i_{k}^{\prime}$ ) is given by the formulas

$$
i_{k}^{\prime}=i_{k}, \quad \text { and } i_{p}=\min \left(i_{p}, i_{p+1}^{\prime}-1\right) \text { for } p=k-1, \cdots, 1
$$

[2; 2.6].
2. Theorem. Let $A$ and $B$ be two $n$-by-n matrices with real or complex elements. Let $\alpha_{1} \geq \cdots \geq \alpha_{n}$ be the absolute singular values of $A$ and $\beta_{1} \geq \cdots \geq \beta_{n}$ be the absolute singular values of $B$. Let $\lambda_{1}, \cdots, \lambda_{n}$ be the real singular values of $A B$ such that

$$
\left|\lambda_{1}\right| \geq \cdots \geq\left|\lambda_{n}\right| .
$$

Then

$$
\begin{align*}
& \frac{1}{2} \beta_{1}\left[\alpha_{i 1^{\prime}+n-1}+\cdots+\alpha_{i k^{\prime}+n-1}+\alpha_{i_{1}+n-1}+\cdots+\alpha_{i k^{\prime}+n-1}\right]  \tag{1}\\
& \leq\left|\lambda_{\left(i_{1}+i_{1}-n\right)} \cdot\right|+\cdots+\left|\lambda_{\left(i_{k}+i_{k}-n\right)} \cdot\right|, \\
& i_{p}+j_{p} \geq n+p, \quad p=1, \cdots, k, \quad \text { and } \\
& \frac{1}{2} \beta_{n}\left[\alpha_{i_{1}{ }^{\prime \prime}-n+1}+\cdots+\alpha_{i_{k^{\prime \prime}-n+1}}+\alpha_{i_{1}{ }^{\prime \prime}-n+1}+\cdots+\alpha_{i_{k}{ }^{\prime \prime}-n+1}\right] \\
& \geq\left|\lambda_{\left(i_{1}+i_{1}-1\right), \prime}\right|+\cdots+\mid \lambda_{\left(i_{k}+j_{k}-1\right)}, \cdot \\
& i_{p}+j_{p} \leq n-k+p+1, \quad p=1, \cdots, k,
\end{align*}
$$

where, for example, the sequences ( $i_{1}^{\prime}, \cdots, i_{k}^{\prime}$ ) and ( $i_{1}^{\prime \prime}, \cdots, i_{k}^{\prime \prime}$ ) are the same as in 2.6 and 2.10 of [2]. (In this theorem $\alpha$ and $\beta$ may be interchanged.)

Received December 30, 1960.

