A NOTE ON THE SINGULAR VALUES OF THE PRODUCT OF TWO MATRICES

By Ali R. Amir-Moéz

In this note we answer one of the questions which has not been established in [1], that is, to estimate the real and imaginary singular values of the product of two matrices.

1. Definitions and notations. For an *n*-by-*n* matrix A, with real or complex elements, the eigenvalues of $(A + A^*)/2$ and $(A - A^*)/2i$ are respectively called the real and imaginary singular values of A. Here A^* is the conjugate transpose of A. It is well known that A^*A and AA^* have the same eigenvalues and these eigenvalues are non-negative. The non-negative square roots of these eigenvalues are called absolute singular values of A.

If $j_p \leq i_p$ for $p = 1, \dots, k$, we write $(j_1, \dots, j_k) \leq (i_1, \dots, i_k)$. Given any sequence $i_1 \leq \dots \leq i_k$ of integers such that $i_p \geq p$ for all p, let (i'_1, \dots, i'_k) denote the strictly increasing sequence of positive integers such that

(a) $(i'_1, \cdots, i'_k) \leq (i_1, \cdots, i_k)$

(b) $(j_1, \dots, j_k) \leq (i'_1, \dots, i'_k)$ whenever (j_1, \dots, j_k)

is a strictly increasing sequence of positive integers which is $\leq (i_1, \dots, i_k)$. It is easily seen that (i'_1, \dots, i'_k) is given by the formulas

 $i'_{k} = i_{k}$, and $i_{p} = \min(i_{p}, i'_{p+1} - 1)$ for $p = k - 1, \dots, 1$ [2; 2.6].

2. THEOREM. Let A and B be two n-by-n matrices with real or complex elements. Let $\alpha_1 \geq \cdots \geq \alpha_n$ be the absolute singular values of A and $\beta_1 \geq \cdots \geq \beta_n$ be the absolute singular values of B. Let $\lambda_1, \cdots, \lambda_n$ be the real singular values of AB such that

 $|\lambda_1| \geq \cdots \geq |\lambda_n|.$

Then

(1)
$$\frac{1}{2}\beta_{1}[\alpha_{i_{1}'+n-1} + \cdots + \alpha_{i_{k}'+n-1} + \alpha_{j_{1}'+n-1} + \cdots + \alpha_{j_{k}'+n-1}] \\ \leq |\lambda_{(i_{1}+j_{1}-n)'}| + \cdots + |\lambda_{(i_{k}+j_{k}-n)'}|, \\ i_{p} + j_{p} \geq n + p, \quad p = 1, \cdots, k, \text{ and} \\ (2) \quad \frac{1}{2}\beta_{n}[\alpha_{i_{1}''-n+1} + \cdots + \alpha_{i_{k}''-n+1} + \alpha_{j_{1}''-n+1} + \cdots + \alpha_{j_{k}''-n+1}] \\ \geq |\lambda_{n}| = |\lambda_{n}| + |\lambda$$

$$\geq |\lambda_{(i_1+j_1-1)}, |+\cdots+|\lambda_{(i_k+j_k-1)}, |,$$

$$i_p + j_p \le n - k + p + 1, \quad p = 1, \dots, k,$$

where, for example, the sequences (i'_1, \dots, i'_k) and (i''_1, \dots, i'_k) are the same as in 2.6 and 2.10 of [2]. (In this theorem α and β may be interchanged.)

Received December 30, 1960.