REPEATED INTEGRALS OF THE SQUARE-WAVE FUNCTIONS AND RELATED SETS OF ORTHOGONAL FUNCTIONS.

BY JOHN W. CELL AND WALTER J. HARRINGTON

1. Introduction. We define

$$
S(1; x) = 1, \t 0 < x < 1,
$$

= -1, \t 1 < x < 2,
= 0 at $x = 0$ and $x = 1$,

and

 $S(1; x + 2) = S(1; x)$.

In the article we present interesting and useful properties of repeated integrals of this function and of the related function

$$
C(1; x) = S(1; x + \frac{1}{2}).
$$

The sequences of functions, $\{S(1; nx)\}\$ and $\{C(1; nx)\}\$, have been considered (in a slightly different notation) in a previous article [3] which also contains ^a more extensive bibliography. We also construct sets of functions which are expressible linearly in terms of corresponding integrals of these S and C functions and which are orthogonal and complete.

It is easily shown that the Fourier series for these two functions are given by

$$
S(1;x) = \frac{4}{\pi} \sum_{k \text{ odd}} \frac{1}{k} \sin k\pi x, \qquad C(1;x) = \frac{4}{\pi} \sum_{k \text{ odd}} \frac{\cos k\pi x \sin (k\pi/2)}{k}.
$$

We define for $m > 1$,

$$
C(m; x) = -g_m \int_{-\frac{1}{2}}^{x} S(m-1; u) du, \qquad S(m; x) = g_m \int_{0}^{x} C(m-1, u) du,
$$

or by the related Fourier series:

$$
C(2n; x) = c_{2n} \sum_{k \text{ odd}} \frac{\cos k\pi x}{k^{2n}}, \qquad S(2n; x) = c_{2n} \sum_{k \text{ odd}} \frac{\sin k\pi x \sin k\pi/2}{k^{2n}},
$$

$$
C(2n + 1; x) = c_{2n+1} \sum_{k \text{ odd}} \frac{\sin (k\pi/2) \cos k\pi x}{k^{2n+1}}, \qquad S(2n + 1; x) = c_{2n+1} \sum_{k \text{ odd}} \frac{\sin k\pi x}{k^{2n+1}}.
$$

Evidently $C(m; x)$ and $S(m; x)$ are each periodic of period $x = 2$, $C(m; x)$

is an even function, and $S(m; x)$ is an odd function.

We choose c_m (or g_m) so that $C(m; x)$ and $S(m; x)$ each have an amplitude Received October 21, 1960.