A SET OF SQUARE-WAVE FUNCTIONS ORTHOGONAL AND COMPLETE IN $L_{2}(0,2)$

By Walter J. Harrington and John W. Cell

1. Introduction. We define

$$
\begin{align*}
& \left.\qquad \begin{array}{rl}
S_{1}(x) & =1, \quad 0<x<1 \\
& =-1, \quad 1<x<2,
\end{array}\right\} \\
& \qquad \begin{aligned}
S_{1}(0) & =S_{1}(1)=0
\end{aligned} \tag{1}\\
& \text { and } \quad S_{1}(x+2)=S(x) .
\end{align*}
$$

Note that $S_{1}(x)=\operatorname{sgn}(\sin \pi x)$.
This is evidently an odd function. We define the related even function

$$
\begin{equation*}
C_{1}(x)=S_{1}(x+1 / 2)=\operatorname{sgn}(\cos \pi x) \tag{2}
\end{equation*}
$$

The functions $S_{1}\left(2^{n} x\right)$ for $n=1,2, \cdots$ are known as Rademacher functions [7], [5], [12]. It is elementary to prove that these functions are orthogonal on (0,1), but not complete.

From the Rademacher functions one may construct the set of Walsh functions [10], [4], [6], [9]. For each positive integer m expressed in binary representation, namely

$$
m=2^{m_{1}}+2^{m_{2}}+\cdots+2^{m_{k}}
$$

write

$$
\psi_{m}(x)=S_{1}\left(2^{m_{1}+1} x\right) S_{1}\left(2^{m_{2}+1} x\right) \cdots S_{1}\left(2^{m_{k}+1} x\right)
$$

This set of functions is orthogonal and complete; it is used extensively in probability and in statistics [2], [3], [11].

In this paper, we define two sequences of functions, $\left\{S_{n}(x)\right\}$ and $\left\{C_{n}(x)\right\}$, consisting of linear combinations of $S_{1}(k x)$ and $C_{1}(k x)$ respectively. Each of these systems of functions is orthogonal on $(0,1)$ and complete in $L_{2}(0,1)$, and together they form a complete orthogonal system in $L_{2}(0,2)$.
2. The sequences of functions $\left\{S_{1}(n x)\right\}$ and $\left\{C_{1}(n x)\right\}$. A theorem established by Szász [8] may be stated as follows.

Theorem 1. (Szász) Let $\phi(x)$ be bounded, $-\infty<x<\infty$, and such that the sequence $\{\phi(n x)\}, n=1,2, \cdots$, is orthogonal on (a, b) and complete in $L_{2}(a, b)$. If $\psi(x) \in L_{2}$ and if its Fourier coefficients a_{n} (with respect to $\{\phi(n x)\}$) satisfy the

Received October 21, 1960.

