FINITE GROUPS OF QUATERNION MATRICES

Dedicated to the memory of Edward Jerome Finan, late Professor of Mathematics at The Catholic University of America

By J. E. Houle

Let \mathfrak{A} and \mathfrak{B} be semigroups of matrices over the skew field of [real] quaternions. \mathfrak{A} is said to be quaternion-similar to \mathfrak{B} if and only if there exists a non-singular matrix P with quaternion coefficients such that $P^{-1}\mathfrak{A}P = \mathfrak{B}$. Otherwise \mathfrak{A} is quaternion distinct from \mathfrak{B} . Similarly, \mathfrak{A} is said to be complex-similar to \mathfrak{B} if and only if there exists a non-singular matrix R with complex coefficients such that $R^{-1}\mathfrak{A}R = \mathfrak{B}$. Otherwise \mathfrak{A} is complex-distinct from \mathfrak{B} . See [2] for further conventions. In particular, if the quaternion matrix M is written in the form $M_1 + jM_2$ where M_1 and M_2 are complex matrices, $M^* = (M_{\alpha\beta})$, $\alpha, \beta = 1, 2$ where $M_{11} = M_{22}^c = M_1$ and $M_{21} = -M_{12}^c = M_2$. (A^c indicates the complex conjugate of the matrix A.)

The purpose of this work is to determine all the quaternion-distinct, quaternion-irreducible representations of a finite group G by quaternion matrices. It would be sufficient to determine the quaternion-distinct, quaternion-irreducible constituents of the regular representation of G and then to show that every quaternion-irreducible representation. That it is possible to do so is a consequence, in part, of the following theorem concerning the quaternion-similarity of complex-distinct semigroups.

THEOREM 1. (This theorem is similar to [1, Chapter I, §5].) Let \mathfrak{A} and \mathfrak{B} be complex-distinct, complex-irreducible semigroups of complex matrices.

- (i) \mathfrak{A} is quaternion-similar to \mathfrak{B} if and only if \mathfrak{A} is complex-similar to \mathfrak{B}° .
- (ii) If \mathfrak{A} and \mathfrak{B} are quaternion-reducible, then \mathfrak{A} is quaternion-distinct from \mathfrak{B} .
- (iii) If A is quaternion-reducible and B is quaternion-irreducible, then A and B are quaternion-distinct.

Proof of (i). If there is a complex matrix P such that $P^{-1}\mathfrak{A}P = \mathfrak{B}^{\circ}$, then $-jP^{-1}\mathfrak{A}Pj = -j\mathfrak{B}^{\circ}j$ or $(Pj)^{-1}\mathfrak{A}(Pj) = \mathfrak{B}$, and \mathfrak{A} is quaternion similar to \mathfrak{B} . Conversely, if there is a quaternion matrix P such that $P^{-1}\mathfrak{A}P = \mathfrak{B}$, then $(P^{-1})^*\mathfrak{A}^*P^* = \mathfrak{B}^*$, and $\mathfrak{A} \oplus \mathfrak{A}^{\circ}$ is complex-similar to $\mathfrak{B} \oplus \mathfrak{B}^{\circ}$. Since \mathfrak{A} and \mathfrak{B} are complex-distinct and complex-irreducible, it follows that \mathfrak{A} is complex-similar to \mathfrak{B}° .

Proof of (ii). There exist quaternion matrices P and R such that $P^{-1}\mathfrak{A}P = \mathfrak{A}_1 \oplus \mathfrak{A}_1$ and $R^{-1}\mathfrak{B}R = \mathfrak{B}_1 \oplus \mathfrak{B}_1$ where \mathfrak{A}_1 and \mathfrak{B}_1 are quaternion-irreducible semigroups [2, Theorem 1]. If \mathfrak{A} is quaternion-similar to \mathfrak{B} , then \mathfrak{A}_1 is quater-

Received October 31, 1960.