FINITE GROUPS OF QUATERNION MATRICES

Dedicated to the memory of Edward Jerome Finan, late Professor of Mathematics at The Catholic University of America

By J. E. Houle

Let \mathfrak{A} and \mathfrak{B} be semigroups of matrices over the skew field of [real] quaternions. \mathfrak{H} is said to be quaternion-similar to \mathfrak{B} if and only if there exists a non-singular matrix P with quaternion coefficients such that $P^{-1} \mathfrak{Q} P=\mathfrak{B}$. Otherwise \mathfrak{A} is quaternion distinct from \mathfrak{B}. Similarly, \mathfrak{A} is said to be complex-similar to \mathfrak{B} if and only if there exists a non-singular matrix R with complex coefficients such that $R^{-1} \mathfrak{A} R=\mathfrak{B}$. Otherwise \mathfrak{A} is complex-distinct from \mathfrak{B}. See [2] for further conventions. In particular, if the quaternion matrix M is written in the form $M_{1}+j M_{2}$ where M_{1} and M_{2} are complex matrices, $M^{*}=\left(M_{\alpha \beta}\right)$, $\alpha, \beta=1,2$ where $M_{11}=M_{22}^{c}=M_{1}$ and $M_{21}=-M_{12}^{c}=M_{2}$. (A^{c} indicates the complex conjugate of the matrix A.)

The purpose of this work is to determine all the quaternion-distinct, quater-nion-irreducible representations of a finite group G by quaternion matrices. It would be sufficient to determine the quaternion-distinct, quaternion-irreducible constituents of the regular representation of G and then to show that every quaternion-irreducible representation of G is quaternion-similar to a constituent of the regular representation. That it is possible to do so is a consequence, in part, of the following theorem concerning the quaternionsimilarity of complex-distinct semigroups.

Theorem 1. (This theorem is similar to [1, Chapter I, §5].) Let \mathfrak{N} and \mathfrak{F} be complex-distinct, complex-irreducible semigroups of complex matrices.
(i) \mathfrak{H} is quaternion-similar to \mathfrak{B} if and only if \mathfrak{H} is complex-similar to \mathfrak{B}^{c}.
(ii) If \mathfrak{A} and \mathfrak{B} are quaternion-reducible, then \mathfrak{A} is quaternion-distinct from \mathfrak{B}.
(iii) If \mathfrak{A} is quaternion-reducible and \mathfrak{B} is quaternion-irreducible, then \mathfrak{A} and \mathfrak{B} are quaternion-distinct.
Proof of (i). If there is a complex matrix P such that $P^{-1} \mathfrak{Q} P=\mathfrak{B}^{c}$, then $-j P^{-1} \mathfrak{Q} P j=-j \mathfrak{B}^{c} j$ or $(P j)^{-1} \mathfrak{A}(P j)=\mathfrak{B}$, and \mathfrak{A} is quaternion similar to \mathfrak{B}. Conversely, if there is a quaternion matrix P such that $P^{-1} \mathfrak{R} P=\mathfrak{B}$, then $\left(P^{-1}\right)^{*} \mathfrak{A} \mathscr{A}^{*}=\mathfrak{B}^{*}$, and $\mathfrak{A} \oplus \mathfrak{Y}^{c}$ is complex-similar to $\mathfrak{B} \oplus \mathfrak{B}^{c}$. Since \mathfrak{A} and \mathfrak{B} are complex-distinct and complex-irreducible, it follows that \mathfrak{H} is complexsimilar to \mathfrak{B}^{c}.

Proof of (ii). There exist quaternion matrices P and R such that $P^{-1} \mathfrak{A} P=$ $\mathfrak{N}_{1} \oplus \mathfrak{N}_{1}$ and $R^{-1} \mathfrak{B} R=\mathfrak{B}_{1} \oplus \mathfrak{B}_{1}$ where \mathfrak{N}_{1} and \mathfrak{B}_{1} are quaternion-irreducible semigroups [2, Theorem 1]. If \mathfrak{A} is quaternion-similar to \mathfrak{B}, then \mathfrak{A}_{1} is quater-

Received October 31, 1960.

