SOME OPERATIONAL EQUATIONS FOR SYMMETRIC POLYNOMIALS

By L. Carlitz

1. Introduction. Let $x_{1}, x_{2}, \cdots, x_{k}$ be k indeterminates, where k is a fixed integer >1. For $r \geq 0$ define the linear operator

$$
\Omega_{r}=\left|\begin{array}{cccc}
1 & 1 & \cdots & 1 \tag{1.1}\\
x_{1} & x_{2} & \cdots & x_{k} \\
\cdots \cdots & \cdots \cdots & \cdots & \cdots \cdots \\
x_{1}^{k-2} & x_{2}^{k-2} & \cdots & x_{k}^{k-2} \\
x_{1}^{r} \frac{\partial}{\partial x_{1}} & x_{2}^{r} \frac{\partial}{\partial x_{2}} & \cdots & x_{k}^{r} \frac{\partial}{\partial x_{k}}
\end{array}\right| .
$$

If we put

$$
T=T_{k}=\left|\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & \cdots & x_{k} \\
\cdots & \cdots & \cdots & \cdots \\
x_{1}^{k-1} & x_{2}^{k-1} & \cdots & x_{k}^{k-1}
\end{array}\right|
$$

and let X_{i} denote the cofactor of x_{i}^{k-1} in T, then we have

$$
\begin{equation*}
\Omega_{r}=\sum_{i=1}^{k} x_{i}^{r} X_{i} \frac{\partial}{\partial x_{i}} \tag{1.2}
\end{equation*}
$$

It is convenient also to define

$$
\begin{equation*}
\omega_{r}=T^{-1} \Omega_{r} \tag{1.3}
\end{equation*}
$$

If now $S=S\left(x_{1}, x_{2}, \cdots, x_{k}\right)$ is any symmetric polynomial, it follows that $\omega_{r} S$ is also symmetric; if S is homogeneous of weight N, then $\omega_{r} S$ is homogeneous of weight $N+r-k$. Conversely we shall show that if S is a given symmetric polynomial, then any polynomial F that satisfies the equation

$$
\begin{equation*}
\omega_{r} F=S \tag{1.4}
\end{equation*}
$$

for some r is necessarily symmetric.
We next discuss the equation (1.4) for $0 \leq r \leq k$. We show that (1.4) is always solvable for values of r in this range. The case $r=k$ is particularly interesting. We find that the operator ω_{k} induces a non-singular linear transformation on the space R_{N} of symmetric polynomials of weight N. If $a_{1}, a_{2}, \cdots, a_{k}$ denote the elementary symmetric polynomials in $x_{1}, x_{2}, \cdots, x_{k}$, then it is familiar that the set of symmetric polynomials

$$
\begin{equation*}
a_{1}^{n_{1}} a_{2}^{n_{2}} \cdots a_{k}^{n_{k}} \quad\left(n_{1}+2 n_{2}+\cdots+k n_{k}=N\right) \tag{1.5}
\end{equation*}
$$

Received October 13, 1960. Supported in part by National Science Foundation Grant G-9425.

