SOME OPERATIONAL EQUATIONS FOR SYMMETRIC POLYNOMIALS

By L. CARLITZ

1. Introduction. Let x_1 , x_2 , \cdots , x_k be k indeterminates, where k is a fixed integer > 1. For $r \ge 0$ define the linear operator

(1.1)
$$\Omega_r = \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_k \\ \vdots & \vdots & \vdots \\ x_1^{k-2} & x_2^{k-2} & \cdots & x_k^{k-2} \\ x_1^r & \frac{\partial}{\partial x_1} & x_2^r & \frac{\partial}{\partial x_2} & \cdots & x_k^r & \frac{\partial}{\partial x_k} \end{vmatrix}$$
If we put
$$\begin{vmatrix} 1 & 1 & \cdots & 1 \end{vmatrix}$$

Т

$$T = T_k = egin{pmatrix} 1 & 1 & \cdots & 1 \ x_1 & x_2 & \cdots & x_k \ \cdots & \cdots & \cdots & \cdots \ x_1^{k-1} & x_2^{k-1} & \cdots & x_k^{k-1} \end{pmatrix}$$

and let X_i denote the cofactor of x_i^{k-1} in T, then we have

(1.2)
$$\Omega_r = \sum_{i=1}^k x_i^r X_i \frac{\partial}{\partial x_i}.$$

It is convenient also to define

(1.3)

If now $S = S(x_1, x_2, \dots, x_k)$ is any symmetric polynomial, it follows that $\omega_r S$ is also symmetric; if S is homogeneous of weight N, then $\omega_r S$ is homogeneous of weight N + r - k. Conversely we shall show that if S is a given symmetric polynomial, then any polynomial F that satisfies the equation

 $\omega_r = T^{-1}\Omega_r \; .$

(1.4)
$$\omega_r F = S$$

for some r is necessarily symmetric.

We next discuss the equation (1.4) for $0 \le r \le k$. We show that (1.4) is always solvable for values of r in this range. The case r = k is particularly interesting. We find that the operator ω_k induces a non-singular linear transformation on the space R_N of symmetric polynomials of weight N. If a_1, a_2, \dots, a_k denote the elementary symmetric polynomials in x_1, x_2, \dots, x_k , then it is familiar that the set of symmetric polynomials

(1.5)
$$a_1^{n_1}a_2^{n_2}\cdots a_k^{n_k} \qquad (n_1+2n_2+\cdots+kn_k=N)$$

Received October 13, 1960. Supported in part by National Science Foundation Grant G-9425.